Step |
Hyp |
Ref |
Expression |
1 |
|
confun5.1 |
|- ph |
2 |
|
confun5.2 |
|- ( ( ph -> ps ) -> ps ) |
3 |
|
confun5.3 |
|- ( ps -> ( ph -> ch ) ) |
4 |
|
confun5.4 |
|- ( ( ch -> th ) -> ( ( ph -> th ) <-> ps ) ) |
5 |
|
confun5.5 |
|- ( ta <-> ( ch -> th ) ) |
6 |
|
confun5.6 |
|- ( et <-> -. ( ch -> ( ch /\ -. ch ) ) ) |
7 |
|
confun5.7 |
|- ps |
8 |
|
confun5.8 |
|- ( ch -> th ) |
9 |
7 3
|
ax-mp |
|- ( ph -> ch ) |
10 |
1 9
|
ax-mp |
|- ch |
11 |
10
|
atnaiana |
|- -. ( ch -> ( ch /\ -. ch ) ) |
12 |
|
bicom1 |
|- ( ( et <-> -. ( ch -> ( ch /\ -. ch ) ) ) -> ( -. ( ch -> ( ch /\ -. ch ) ) <-> et ) ) |
13 |
6 12
|
ax-mp |
|- ( -. ( ch -> ( ch /\ -. ch ) ) <-> et ) |
14 |
13
|
biimpi |
|- ( -. ( ch -> ( ch /\ -. ch ) ) -> et ) |
15 |
11 14
|
ax-mp |
|- et |
16 |
|
bicom1 |
|- ( ( ta <-> ( ch -> th ) ) -> ( ( ch -> th ) <-> ta ) ) |
17 |
5 16
|
ax-mp |
|- ( ( ch -> th ) <-> ta ) |
18 |
17
|
biimpi |
|- ( ( ch -> th ) -> ta ) |
19 |
8 18
|
ax-mp |
|- ta |
20 |
15 19
|
2th |
|- ( et <-> ta ) |
21 |
|
ax-1 |
|- ( ( et <-> ta ) -> ( ch -> ( et <-> ta ) ) ) |
22 |
20 21
|
ax-mp |
|- ( ch -> ( et <-> ta ) ) |