Metamath Proof Explorer


Theorem confun5

Description: An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses confun5.1
|- ph
confun5.2
|- ( ( ph -> ps ) -> ps )
confun5.3
|- ( ps -> ( ph -> ch ) )
confun5.4
|- ( ( ch -> th ) -> ( ( ph -> th ) <-> ps ) )
confun5.5
|- ( ta <-> ( ch -> th ) )
confun5.6
|- ( et <-> -. ( ch -> ( ch /\ -. ch ) ) )
confun5.7
|- ps
confun5.8
|- ( ch -> th )
Assertion confun5
|- ( ch -> ( et <-> ta ) )

Proof

Step Hyp Ref Expression
1 confun5.1
 |-  ph
2 confun5.2
 |-  ( ( ph -> ps ) -> ps )
3 confun5.3
 |-  ( ps -> ( ph -> ch ) )
4 confun5.4
 |-  ( ( ch -> th ) -> ( ( ph -> th ) <-> ps ) )
5 confun5.5
 |-  ( ta <-> ( ch -> th ) )
6 confun5.6
 |-  ( et <-> -. ( ch -> ( ch /\ -. ch ) ) )
7 confun5.7
 |-  ps
8 confun5.8
 |-  ( ch -> th )
9 7 3 ax-mp
 |-  ( ph -> ch )
10 1 9 ax-mp
 |-  ch
11 10 atnaiana
 |-  -. ( ch -> ( ch /\ -. ch ) )
12 bicom1
 |-  ( ( et <-> -. ( ch -> ( ch /\ -. ch ) ) ) -> ( -. ( ch -> ( ch /\ -. ch ) ) <-> et ) )
13 6 12 ax-mp
 |-  ( -. ( ch -> ( ch /\ -. ch ) ) <-> et )
14 13 biimpi
 |-  ( -. ( ch -> ( ch /\ -. ch ) ) -> et )
15 11 14 ax-mp
 |-  et
16 bicom1
 |-  ( ( ta <-> ( ch -> th ) ) -> ( ( ch -> th ) <-> ta ) )
17 5 16 ax-mp
 |-  ( ( ch -> th ) <-> ta )
18 17 biimpi
 |-  ( ( ch -> th ) -> ta )
19 8 18 ax-mp
 |-  ta
20 15 19 2th
 |-  ( et <-> ta )
21 ax-1
 |-  ( ( et <-> ta ) -> ( ch -> ( et <-> ta ) ) )
22 20 21 ax-mp
 |-  ( ch -> ( et <-> ta ) )