Step |
Hyp |
Ref |
Expression |
1 |
|
congsym |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( C - B ) ) |
2 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
3 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
4 |
|
neg2sub |
|- ( ( B e. CC /\ C e. CC ) -> ( -u B - -u C ) = ( C - B ) ) |
5 |
2 3 4
|
syl2an |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( -u B - -u C ) = ( C - B ) ) |
6 |
5
|
ad2ant2lr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( -u B - -u C ) = ( C - B ) ) |
7 |
1 6
|
breqtrrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( -u B - -u C ) ) |