| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( B - C ) ) |
| 2 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
| 3 |
2
|
ad2antrl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> C e. CC ) |
| 4 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 5 |
4
|
ad2antlr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> B e. CC ) |
| 6 |
3 5
|
negsubdi2d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> -u ( C - B ) = ( B - C ) ) |
| 7 |
1 6
|
breqtrrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || -u ( C - B ) ) |
| 8 |
|
simpll |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A e. ZZ ) |
| 9 |
|
simprl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> C e. ZZ ) |
| 10 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> B e. ZZ ) |
| 11 |
9 10
|
zsubcld |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( C - B ) e. ZZ ) |
| 12 |
|
dvdsnegb |
|- ( ( A e. ZZ /\ ( C - B ) e. ZZ ) -> ( A || ( C - B ) <-> A || -u ( C - B ) ) ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( A || ( C - B ) <-> A || -u ( C - B ) ) ) |
| 14 |
7 13
|
mpbird |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( C - B ) ) |