Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( B - C ) ) |
2 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
3 |
2
|
ad2antrl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> C e. CC ) |
4 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
5 |
4
|
ad2antlr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> B e. CC ) |
6 |
3 5
|
negsubdi2d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> -u ( C - B ) = ( B - C ) ) |
7 |
1 6
|
breqtrrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || -u ( C - B ) ) |
8 |
|
simpll |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A e. ZZ ) |
9 |
|
simprl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> C e. ZZ ) |
10 |
|
simplr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> B e. ZZ ) |
11 |
9 10
|
zsubcld |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( C - B ) e. ZZ ) |
12 |
|
dvdsnegb |
|- ( ( A e. ZZ /\ ( C - B ) e. ZZ ) -> ( A || ( C - B ) <-> A || -u ( C - B ) ) ) |
13 |
8 11 12
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> ( A || ( C - B ) <-> A || -u ( C - B ) ) ) |
14 |
7 13
|
mpbird |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( C - B ) ) |