Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | conimpf.1 | |- ph |
|
conimpf.2 | |- -. ps |
||
conimpf.3 | |- ( ph -> ps ) |
||
Assertion | conimpf | |- ( ph <-> F. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conimpf.1 | |- ph |
|
2 | conimpf.2 | |- -. ps |
|
3 | conimpf.3 | |- ( ph -> ps ) |
|
4 | 3 2 | aibnbaif | |- ( ph <-> F. ) |