Metamath Proof Explorer


Theorem conimpf

Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016)

Ref Expression
Hypotheses conimpf.1
|- ph
conimpf.2
|- -. ps
conimpf.3
|- ( ph -> ps )
Assertion conimpf
|- ( ph <-> F. )

Proof

Step Hyp Ref Expression
1 conimpf.1
 |-  ph
2 conimpf.2
 |-  -. ps
3 conimpf.3
 |-  ( ph -> ps )
4 3 2 aibnbaif
 |-  ( ph <-> F. )