Metamath Proof Explorer


Theorem conimpfalt

Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Hypotheses conimpfalt.1
|- ph
conimpfalt.2
|- -. ps
conimpfalt.3
|- ( ph -> ps )
Assertion conimpfalt
|- ( ph <-> F. )

Proof

Step Hyp Ref Expression
1 conimpfalt.1
 |-  ph
2 conimpfalt.2
 |-  -. ps
3 conimpfalt.3
 |-  ( ph -> ps )
4 3 2 aibnbaif
 |-  ( ph <-> F. )