Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> P e. CC ) |
2 |
|
simprl |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> Q e. CC ) |
3 |
|
reccl |
|- ( ( P e. CC /\ P =/= 0 ) -> ( 1 / P ) e. CC ) |
4 |
3
|
adantr |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( 1 / P ) e. CC ) |
5 |
1 2 4
|
mul32d |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / P ) ) = ( ( P x. ( 1 / P ) ) x. Q ) ) |
6 |
|
recid |
|- ( ( P e. CC /\ P =/= 0 ) -> ( P x. ( 1 / P ) ) = 1 ) |
7 |
6
|
oveq1d |
|- ( ( P e. CC /\ P =/= 0 ) -> ( ( P x. ( 1 / P ) ) x. Q ) = ( 1 x. Q ) ) |
8 |
7
|
adantr |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. ( 1 / P ) ) x. Q ) = ( 1 x. Q ) ) |
9 |
|
mulid2 |
|- ( Q e. CC -> ( 1 x. Q ) = Q ) |
10 |
9
|
ad2antrl |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( 1 x. Q ) = Q ) |
11 |
5 8 10
|
3eqtrd |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / P ) ) = Q ) |
12 |
|
reccl |
|- ( ( Q e. CC /\ Q =/= 0 ) -> ( 1 / Q ) e. CC ) |
13 |
12
|
adantl |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( 1 / Q ) e. CC ) |
14 |
1 2 13
|
mulassd |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / Q ) ) = ( P x. ( Q x. ( 1 / Q ) ) ) ) |
15 |
|
recid |
|- ( ( Q e. CC /\ Q =/= 0 ) -> ( Q x. ( 1 / Q ) ) = 1 ) |
16 |
15
|
oveq2d |
|- ( ( Q e. CC /\ Q =/= 0 ) -> ( P x. ( Q x. ( 1 / Q ) ) ) = ( P x. 1 ) ) |
17 |
16
|
adantl |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. ( Q x. ( 1 / Q ) ) ) = ( P x. 1 ) ) |
18 |
|
mulid1 |
|- ( P e. CC -> ( P x. 1 ) = P ) |
19 |
18
|
ad2antrr |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. 1 ) = P ) |
20 |
14 17 19
|
3eqtrd |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / Q ) ) = P ) |
21 |
11 20
|
oveq12d |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( P x. Q ) x. ( 1 / P ) ) + ( ( P x. Q ) x. ( 1 / Q ) ) ) = ( Q + P ) ) |
22 |
|
mulcl |
|- ( ( P e. CC /\ Q e. CC ) -> ( P x. Q ) e. CC ) |
23 |
22
|
ad2ant2r |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. Q ) e. CC ) |
24 |
23 4 13
|
adddid |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( ( P x. Q ) x. ( 1 / P ) ) + ( ( P x. Q ) x. ( 1 / Q ) ) ) ) |
25 |
|
addcom |
|- ( ( P e. CC /\ Q e. CC ) -> ( P + Q ) = ( Q + P ) ) |
26 |
25
|
ad2ant2r |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P + Q ) = ( Q + P ) ) |
27 |
21 24 26
|
3eqtr4d |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( P + Q ) ) |
28 |
22
|
mulid1d |
|- ( ( P e. CC /\ Q e. CC ) -> ( ( P x. Q ) x. 1 ) = ( P x. Q ) ) |
29 |
28
|
ad2ant2r |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. 1 ) = ( P x. Q ) ) |
30 |
27 29
|
eqeq12d |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( P + Q ) = ( P x. Q ) ) ) |
31 |
|
addcl |
|- ( ( ( 1 / P ) e. CC /\ ( 1 / Q ) e. CC ) -> ( ( 1 / P ) + ( 1 / Q ) ) e. CC ) |
32 |
3 12 31
|
syl2an |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( 1 / P ) + ( 1 / Q ) ) e. CC ) |
33 |
|
mulne0 |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. Q ) =/= 0 ) |
34 |
|
ax-1cn |
|- 1 e. CC |
35 |
|
mulcan |
|- ( ( ( ( 1 / P ) + ( 1 / Q ) ) e. CC /\ 1 e. CC /\ ( ( P x. Q ) e. CC /\ ( P x. Q ) =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) ) |
36 |
34 35
|
mp3an2 |
|- ( ( ( ( 1 / P ) + ( 1 / Q ) ) e. CC /\ ( ( P x. Q ) e. CC /\ ( P x. Q ) =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) ) |
37 |
32 23 33 36
|
syl12anc |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) ) |
38 |
|
eqcom |
|- ( ( P + Q ) = ( P x. Q ) <-> ( P x. Q ) = ( P + Q ) ) |
39 |
|
muleqadd |
|- ( ( P e. CC /\ Q e. CC ) -> ( ( P x. Q ) = ( P + Q ) <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |
40 |
38 39
|
syl5bb |
|- ( ( P e. CC /\ Q e. CC ) -> ( ( P + Q ) = ( P x. Q ) <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |
41 |
40
|
ad2ant2r |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P + Q ) = ( P x. Q ) <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |
42 |
30 37 41
|
3bitr3d |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( 1 / P ) + ( 1 / Q ) ) = 1 <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |