| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | conjghm.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | conjghm.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | conjsubg.f |  |-  F = ( x e. S |-> ( ( A .+ x ) .- A ) ) | 
						
							| 5 |  | conjnmz.1 |  |-  N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } | 
						
							| 6 |  | subgrcl |  |-  ( S e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 7 | 6 | ad2antrr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> G e. Grp ) | 
						
							| 8 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 9 | 5 | ssrab3 |  |-  N C_ X | 
						
							| 10 |  | simplr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> A e. N ) | 
						
							| 11 | 9 10 | sselid |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> A e. X ) | 
						
							| 12 | 1 8 7 11 | grpinvcld |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( invg ` G ) ` A ) e. X ) | 
						
							| 13 | 1 | subgss |  |-  ( S e. ( SubGrp ` G ) -> S C_ X ) | 
						
							| 14 | 13 | adantr |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S C_ X ) | 
						
							| 15 | 14 | sselda |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. X ) | 
						
							| 16 | 1 2 7 12 15 11 | grpassd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 18 | 1 2 17 8 7 11 | grprinvd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( invg ` G ) ` A ) ) = ( 0g ` G ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ w ) = ( ( 0g ` G ) .+ w ) ) | 
						
							| 20 | 1 2 7 11 12 15 | grpassd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ w ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) ) | 
						
							| 21 | 1 2 17 7 15 | grplidd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( 0g ` G ) .+ w ) = w ) | 
						
							| 22 | 19 20 21 | 3eqtr3d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) = w ) | 
						
							| 23 |  | simpr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. S ) | 
						
							| 24 | 22 23 | eqeltrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S ) | 
						
							| 25 | 1 2 7 12 15 | grpcld |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( invg ` G ) ` A ) .+ w ) e. X ) | 
						
							| 26 | 5 | nmzbi |  |-  ( ( A e. N /\ ( ( ( invg ` G ) ` A ) .+ w ) e. X ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S <-> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) ) | 
						
							| 27 | 10 25 26 | syl2anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ w ) ) e. S <-> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) ) | 
						
							| 28 | 24 27 | mpbid |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( ( invg ` G ) ` A ) .+ w ) .+ A ) e. S ) | 
						
							| 29 | 16 28 | eqeltrrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S ) | 
						
							| 30 |  | oveq2 |  |-  ( x = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) -> ( A .+ x ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( x = ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) -> ( ( A .+ x ) .- A ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) | 
						
							| 32 |  | ovex |  |-  ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) e. _V | 
						
							| 33 | 31 4 32 | fvmpt |  |-  ( ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) | 
						
							| 34 | 29 33 | syl |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) ) | 
						
							| 35 | 18 | oveq1d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ ( w .+ A ) ) = ( ( 0g ` G ) .+ ( w .+ A ) ) ) | 
						
							| 36 | 1 2 7 15 11 | grpcld |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( w .+ A ) e. X ) | 
						
							| 37 | 1 2 7 11 12 36 | grpassd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( invg ` G ) ` A ) ) .+ ( w .+ A ) ) = ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) ) | 
						
							| 38 | 1 2 17 7 36 | grplidd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( 0g ` G ) .+ ( w .+ A ) ) = ( w .+ A ) ) | 
						
							| 39 | 35 37 38 | 3eqtr3d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = ( w .+ A ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( A .+ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) .- A ) = ( ( w .+ A ) .- A ) ) | 
						
							| 41 | 1 2 3 | grppncan |  |-  ( ( G e. Grp /\ w e. X /\ A e. X ) -> ( ( w .+ A ) .- A ) = w ) | 
						
							| 42 | 7 15 11 41 | syl3anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( ( w .+ A ) .- A ) = w ) | 
						
							| 43 | 34 40 42 | 3eqtrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) = w ) | 
						
							| 44 |  | ovex |  |-  ( ( A .+ x ) .- A ) e. _V | 
						
							| 45 | 44 4 | fnmpti |  |-  F Fn S | 
						
							| 46 |  | fnfvelrn |  |-  ( ( F Fn S /\ ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) e. ran F ) | 
						
							| 47 | 45 29 46 | sylancr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> ( F ` ( ( ( invg ` G ) ` A ) .+ ( w .+ A ) ) ) e. ran F ) | 
						
							| 48 | 43 47 | eqeltrrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ w e. S ) -> w e. ran F ) | 
						
							| 49 | 48 | ex |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ( w e. S -> w e. ran F ) ) | 
						
							| 50 | 49 | ssrdv |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S C_ ran F ) | 
						
							| 51 | 6 | ad2antrr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> G e. Grp ) | 
						
							| 52 |  | simplr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> A e. N ) | 
						
							| 53 | 9 52 | sselid |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> A e. X ) | 
						
							| 54 | 14 | sselda |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> x e. X ) | 
						
							| 55 | 1 2 3 | grpaddsubass |  |-  ( ( G e. Grp /\ ( A e. X /\ x e. X /\ A e. X ) ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) | 
						
							| 56 | 51 53 54 53 55 | syl13anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) | 
						
							| 57 | 1 2 3 | grpnpcan |  |-  ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( ( x .- A ) .+ A ) = x ) | 
						
							| 58 | 51 54 53 57 | syl3anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( x .- A ) .+ A ) = x ) | 
						
							| 59 |  | simpr |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> x e. S ) | 
						
							| 60 | 58 59 | eqeltrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( x .- A ) .+ A ) e. S ) | 
						
							| 61 | 1 3 | grpsubcl |  |-  ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( x .- A ) e. X ) | 
						
							| 62 | 51 54 53 61 | syl3anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( x .- A ) e. X ) | 
						
							| 63 | 5 | nmzbi |  |-  ( ( A e. N /\ ( x .- A ) e. X ) -> ( ( A .+ ( x .- A ) ) e. S <-> ( ( x .- A ) .+ A ) e. S ) ) | 
						
							| 64 | 52 62 63 | syl2anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ ( x .- A ) ) e. S <-> ( ( x .- A ) .+ A ) e. S ) ) | 
						
							| 65 | 60 64 | mpbird |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( A .+ ( x .- A ) ) e. S ) | 
						
							| 66 | 56 65 | eqeltrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. N ) /\ x e. S ) -> ( ( A .+ x ) .- A ) e. S ) | 
						
							| 67 | 66 4 | fmptd |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> F : S --> S ) | 
						
							| 68 | 67 | frnd |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ran F C_ S ) | 
						
							| 69 | 50 68 | eqssd |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) |