Step |
Hyp |
Ref |
Expression |
1 |
|
conjghm.x |
|- X = ( Base ` G ) |
2 |
|
conjghm.p |
|- .+ = ( +g ` G ) |
3 |
|
conjghm.m |
|- .- = ( -g ` G ) |
4 |
|
conjsubg.f |
|- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
5 |
|
conjnmz.1 |
|- N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
6 |
5
|
ssrab3 |
|- N C_ X |
7 |
|
simpr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. N ) |
8 |
6 7
|
sselid |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. X ) |
9 |
1 2 3 4 5
|
conjnmz |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) |
10 |
8 9
|
jca |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ( A e. X /\ S = ran F ) ) |
11 |
|
simprl |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. X ) |
12 |
|
simplrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> S = ran F ) |
13 |
12
|
eleq2d |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( A .+ w ) e. ran F ) ) |
14 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
15 |
14
|
ad3antrrr |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> G e. Grp ) |
16 |
|
simpllr |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> A e. X ) |
17 |
1
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ X ) |
18 |
17
|
ad2antrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> S C_ X ) |
19 |
18
|
sselda |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> x e. X ) |
20 |
1 2 3
|
grpaddsubass |
|- ( ( G e. Grp /\ ( A e. X /\ x e. X /\ A e. X ) ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
21 |
15 16 19 16 20
|
syl13anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
22 |
21
|
eqeq1d |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( A .+ ( x .- A ) ) = ( A .+ w ) ) ) |
23 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( x .- A ) e. X ) |
24 |
15 19 16 23
|
syl3anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( x .- A ) e. X ) |
25 |
|
simplr |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> w e. X ) |
26 |
1 2
|
grplcan |
|- ( ( G e. Grp /\ ( ( x .- A ) e. X /\ w e. X /\ A e. X ) ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) |
27 |
15 24 25 16 26
|
syl13anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) |
28 |
1 2 3
|
grpsubadd |
|- ( ( G e. Grp /\ ( x e. X /\ A e. X /\ w e. X ) ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) |
29 |
15 19 16 25 28
|
syl13anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) |
30 |
22 27 29
|
3bitrd |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( w .+ A ) = x ) ) |
31 |
|
eqcom |
|- ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> ( ( A .+ x ) .- A ) = ( A .+ w ) ) |
32 |
|
eqcom |
|- ( x = ( w .+ A ) <-> ( w .+ A ) = x ) |
33 |
30 31 32
|
3bitr4g |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> x = ( w .+ A ) ) ) |
34 |
33
|
rexbidva |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) |
35 |
34
|
adantlrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) |
36 |
|
ovex |
|- ( A .+ w ) e. _V |
37 |
|
eqeq1 |
|- ( y = ( A .+ w ) -> ( y = ( ( A .+ x ) .- A ) <-> ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) |
38 |
37
|
rexbidv |
|- ( y = ( A .+ w ) -> ( E. x e. S y = ( ( A .+ x ) .- A ) <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) |
39 |
4
|
rnmpt |
|- ran F = { y | E. x e. S y = ( ( A .+ x ) .- A ) } |
40 |
36 38 39
|
elab2 |
|- ( ( A .+ w ) e. ran F <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) |
41 |
|
risset |
|- ( ( w .+ A ) e. S <-> E. x e. S x = ( w .+ A ) ) |
42 |
35 40 41
|
3bitr4g |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. ran F <-> ( w .+ A ) e. S ) ) |
43 |
13 42
|
bitrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) |
44 |
43
|
ralrimiva |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) |
45 |
5
|
elnmz |
|- ( A e. N <-> ( A e. X /\ A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) ) |
46 |
11 44 45
|
sylanbrc |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. N ) |
47 |
10 46
|
impbida |
|- ( S e. ( SubGrp ` G ) -> ( A e. N <-> ( A e. X /\ S = ran F ) ) ) |