| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
|- X = ( Base ` G ) |
| 2 |
|
conjghm.p |
|- .+ = ( +g ` G ) |
| 3 |
|
conjghm.m |
|- .- = ( -g ` G ) |
| 4 |
|
conjsubg.f |
|- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
| 5 |
|
conjnmz.1 |
|- N = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
| 6 |
5
|
ssrab3 |
|- N C_ X |
| 7 |
|
simpr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. N ) |
| 8 |
6 7
|
sselid |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> A e. X ) |
| 9 |
1 2 3 4 5
|
conjnmz |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> S = ran F ) |
| 10 |
8 9
|
jca |
|- ( ( S e. ( SubGrp ` G ) /\ A e. N ) -> ( A e. X /\ S = ran F ) ) |
| 11 |
|
simprl |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. X ) |
| 12 |
|
simplrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> S = ran F ) |
| 13 |
12
|
eleq2d |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( A .+ w ) e. ran F ) ) |
| 14 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 15 |
14
|
ad3antrrr |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> G e. Grp ) |
| 16 |
|
simpllr |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> A e. X ) |
| 17 |
1
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> S C_ X ) |
| 19 |
18
|
sselda |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> x e. X ) |
| 20 |
1 2 3
|
grpaddsubass |
|- ( ( G e. Grp /\ ( A e. X /\ x e. X /\ A e. X ) ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 21 |
15 16 19 16 20
|
syl13anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ x ) .- A ) = ( A .+ ( x .- A ) ) ) |
| 22 |
21
|
eqeq1d |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( A .+ ( x .- A ) ) = ( A .+ w ) ) ) |
| 23 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ x e. X /\ A e. X ) -> ( x .- A ) e. X ) |
| 24 |
15 19 16 23
|
syl3anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( x .- A ) e. X ) |
| 25 |
|
simplr |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> w e. X ) |
| 26 |
1 2
|
grplcan |
|- ( ( G e. Grp /\ ( ( x .- A ) e. X /\ w e. X /\ A e. X ) ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) |
| 27 |
15 24 25 16 26
|
syl13anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ ( x .- A ) ) = ( A .+ w ) <-> ( x .- A ) = w ) ) |
| 28 |
1 2 3
|
grpsubadd |
|- ( ( G e. Grp /\ ( x e. X /\ A e. X /\ w e. X ) ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) |
| 29 |
15 19 16 25 28
|
syl13anc |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( x .- A ) = w <-> ( w .+ A ) = x ) ) |
| 30 |
22 27 29
|
3bitrd |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( ( A .+ x ) .- A ) = ( A .+ w ) <-> ( w .+ A ) = x ) ) |
| 31 |
|
eqcom |
|- ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> ( ( A .+ x ) .- A ) = ( A .+ w ) ) |
| 32 |
|
eqcom |
|- ( x = ( w .+ A ) <-> ( w .+ A ) = x ) |
| 33 |
30 31 32
|
3bitr4g |
|- ( ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) /\ x e. S ) -> ( ( A .+ w ) = ( ( A .+ x ) .- A ) <-> x = ( w .+ A ) ) ) |
| 34 |
33
|
rexbidva |
|- ( ( ( S e. ( SubGrp ` G ) /\ A e. X ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) |
| 35 |
34
|
adantlrr |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) <-> E. x e. S x = ( w .+ A ) ) ) |
| 36 |
|
ovex |
|- ( A .+ w ) e. _V |
| 37 |
|
eqeq1 |
|- ( y = ( A .+ w ) -> ( y = ( ( A .+ x ) .- A ) <-> ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) |
| 38 |
37
|
rexbidv |
|- ( y = ( A .+ w ) -> ( E. x e. S y = ( ( A .+ x ) .- A ) <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) ) |
| 39 |
4
|
rnmpt |
|- ran F = { y | E. x e. S y = ( ( A .+ x ) .- A ) } |
| 40 |
36 38 39
|
elab2 |
|- ( ( A .+ w ) e. ran F <-> E. x e. S ( A .+ w ) = ( ( A .+ x ) .- A ) ) |
| 41 |
|
risset |
|- ( ( w .+ A ) e. S <-> E. x e. S x = ( w .+ A ) ) |
| 42 |
35 40 41
|
3bitr4g |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. ran F <-> ( w .+ A ) e. S ) ) |
| 43 |
13 42
|
bitrd |
|- ( ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) /\ w e. X ) -> ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) |
| 44 |
43
|
ralrimiva |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) |
| 45 |
5
|
elnmz |
|- ( A e. N <-> ( A e. X /\ A. w e. X ( ( A .+ w ) e. S <-> ( w .+ A ) e. S ) ) ) |
| 46 |
11 44 45
|
sylanbrc |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. X /\ S = ran F ) ) -> A e. N ) |
| 47 |
10 46
|
impbida |
|- ( S e. ( SubGrp ` G ) -> ( A e. N <-> ( A e. X /\ S = ran F ) ) ) |