| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | conjghm.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | conjghm.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | conjsubg.f |  |-  F = ( x e. S |-> ( ( A .+ x ) .- A ) ) | 
						
							| 5 | 1 | subgss |  |-  ( S e. ( SubGrp ` G ) -> S C_ X ) | 
						
							| 6 | 5 | adantr |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S C_ X ) | 
						
							| 7 |  | df-ima |  |-  ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) | 
						
							| 8 |  | resmpt |  |-  ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = ( x e. S |-> ( ( A .+ x ) .- A ) ) ) | 
						
							| 9 | 8 4 | eqtr4di |  |-  ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = F ) | 
						
							| 10 | 9 | rneqd |  |-  ( S C_ X -> ran ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = ran F ) | 
						
							| 11 | 7 10 | eqtrid |  |-  ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran F ) | 
						
							| 12 | 6 11 | syl |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran F ) | 
						
							| 13 |  | subgrcl |  |-  ( S e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 14 |  | eqid |  |-  ( x e. X |-> ( ( A .+ x ) .- A ) ) = ( x e. X |-> ( ( A .+ x ) .- A ) ) | 
						
							| 15 | 1 2 3 14 | conjghm |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) | 
						
							| 16 | 13 15 | sylan |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) | 
						
							| 17 | 16 | simpld |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) ) | 
						
							| 18 |  | simpl |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S e. ( SubGrp ` G ) ) | 
						
							| 19 |  | ghmima |  |-  ( ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ S e. ( SubGrp ` G ) ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) e. ( SubGrp ` G ) ) | 
						
							| 20 | 17 18 19 | syl2anc |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) e. ( SubGrp ` G ) ) | 
						
							| 21 | 12 20 | eqeltrrd |  |-  ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ran F e. ( SubGrp ` G ) ) |