| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isconn.1 |  |-  X = U. J | 
						
							| 2 |  | connclo.1 |  |-  ( ph -> J e. Conn ) | 
						
							| 3 |  | connclo.2 |  |-  ( ph -> A e. J ) | 
						
							| 4 |  | connclo.3 |  |-  ( ph -> A =/= (/) ) | 
						
							| 5 |  | connclo.4 |  |-  ( ph -> A e. ( Clsd ` J ) ) | 
						
							| 6 | 4 | neneqd |  |-  ( ph -> -. A = (/) ) | 
						
							| 7 | 3 5 | elind |  |-  ( ph -> A e. ( J i^i ( Clsd ` J ) ) ) | 
						
							| 8 | 1 | isconn |  |-  ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) | 
						
							| 9 | 8 | simprbi |  |-  ( J e. Conn -> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) | 
						
							| 10 | 2 9 | syl |  |-  ( ph -> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) | 
						
							| 11 | 7 10 | eleqtrd |  |-  ( ph -> A e. { (/) , X } ) | 
						
							| 12 |  | elpri |  |-  ( A e. { (/) , X } -> ( A = (/) \/ A = X ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> ( A = (/) \/ A = X ) ) | 
						
							| 14 | 13 | ord |  |-  ( ph -> ( -. A = (/) -> A = X ) ) | 
						
							| 15 | 6 14 | mpd |  |-  ( ph -> A = X ) |