| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conncn.x |  |-  X = U. J | 
						
							| 2 |  | conncn.j |  |-  ( ph -> J e. Conn ) | 
						
							| 3 |  | conncn.f |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 4 |  | conncn.u |  |-  ( ph -> U e. K ) | 
						
							| 5 |  | conncn.c |  |-  ( ph -> U e. ( Clsd ` K ) ) | 
						
							| 6 |  | conncn.a |  |-  ( ph -> A e. X ) | 
						
							| 7 |  | conncn.1 |  |-  ( ph -> ( F ` A ) e. U ) | 
						
							| 8 |  | eqid |  |-  U. K = U. K | 
						
							| 9 | 1 8 | cnf |  |-  ( F e. ( J Cn K ) -> F : X --> U. K ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> F : X --> U. K ) | 
						
							| 11 | 10 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 12 | 10 | frnd |  |-  ( ph -> ran F C_ U. K ) | 
						
							| 13 |  | dffn4 |  |-  ( F Fn X <-> F : X -onto-> ran F ) | 
						
							| 14 | 11 13 | sylib |  |-  ( ph -> F : X -onto-> ran F ) | 
						
							| 15 |  | cntop2 |  |-  ( F e. ( J Cn K ) -> K e. Top ) | 
						
							| 16 | 3 15 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 17 | 8 | restuni |  |-  ( ( K e. Top /\ ran F C_ U. K ) -> ran F = U. ( K |`t ran F ) ) | 
						
							| 18 | 16 12 17 | syl2anc |  |-  ( ph -> ran F = U. ( K |`t ran F ) ) | 
						
							| 19 |  | foeq3 |  |-  ( ran F = U. ( K |`t ran F ) -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( K |`t ran F ) ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( K |`t ran F ) ) ) | 
						
							| 21 | 14 20 | mpbid |  |-  ( ph -> F : X -onto-> U. ( K |`t ran F ) ) | 
						
							| 22 |  | toptopon2 |  |-  ( K e. Top <-> K e. ( TopOn ` U. K ) ) | 
						
							| 23 | 16 22 | sylib |  |-  ( ph -> K e. ( TopOn ` U. K ) ) | 
						
							| 24 |  | ssidd |  |-  ( ph -> ran F C_ ran F ) | 
						
							| 25 |  | cnrest2 |  |-  ( ( K e. ( TopOn ` U. K ) /\ ran F C_ ran F /\ ran F C_ U. K ) -> ( F e. ( J Cn K ) <-> F e. ( J Cn ( K |`t ran F ) ) ) ) | 
						
							| 26 | 23 24 12 25 | syl3anc |  |-  ( ph -> ( F e. ( J Cn K ) <-> F e. ( J Cn ( K |`t ran F ) ) ) ) | 
						
							| 27 | 3 26 | mpbid |  |-  ( ph -> F e. ( J Cn ( K |`t ran F ) ) ) | 
						
							| 28 |  | eqid |  |-  U. ( K |`t ran F ) = U. ( K |`t ran F ) | 
						
							| 29 | 28 | cnconn |  |-  ( ( J e. Conn /\ F : X -onto-> U. ( K |`t ran F ) /\ F e. ( J Cn ( K |`t ran F ) ) ) -> ( K |`t ran F ) e. Conn ) | 
						
							| 30 | 2 21 27 29 | syl3anc |  |-  ( ph -> ( K |`t ran F ) e. Conn ) | 
						
							| 31 |  | fnfvelrn |  |-  ( ( F Fn X /\ A e. X ) -> ( F ` A ) e. ran F ) | 
						
							| 32 | 11 6 31 | syl2anc |  |-  ( ph -> ( F ` A ) e. ran F ) | 
						
							| 33 |  | inelcm |  |-  ( ( ( F ` A ) e. U /\ ( F ` A ) e. ran F ) -> ( U i^i ran F ) =/= (/) ) | 
						
							| 34 | 7 32 33 | syl2anc |  |-  ( ph -> ( U i^i ran F ) =/= (/) ) | 
						
							| 35 | 8 12 30 4 34 5 | connsubclo |  |-  ( ph -> ran F C_ U ) | 
						
							| 36 |  | df-f |  |-  ( F : X --> U <-> ( F Fn X /\ ran F C_ U ) ) | 
						
							| 37 | 11 35 36 | sylanbrc |  |-  ( ph -> F : X --> U ) |