Step |
Hyp |
Ref |
Expression |
1 |
|
isconn.1 |
|- X = U. J |
2 |
|
connclo.1 |
|- ( ph -> J e. Conn ) |
3 |
|
connclo.2 |
|- ( ph -> A e. J ) |
4 |
|
connclo.3 |
|- ( ph -> A =/= (/) ) |
5 |
|
conndisj.4 |
|- ( ph -> B e. J ) |
6 |
|
conndisj.5 |
|- ( ph -> B =/= (/) ) |
7 |
|
conndisj.6 |
|- ( ph -> ( A i^i B ) = (/) ) |
8 |
|
elssuni |
|- ( A e. J -> A C_ U. J ) |
9 |
3 8
|
syl |
|- ( ph -> A C_ U. J ) |
10 |
9 1
|
sseqtrrdi |
|- ( ph -> A C_ X ) |
11 |
|
uneqdifeq |
|- ( ( A C_ X /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = X <-> ( X \ A ) = B ) ) |
12 |
10 7 11
|
syl2anc |
|- ( ph -> ( ( A u. B ) = X <-> ( X \ A ) = B ) ) |
13 |
|
simpr |
|- ( ( ph /\ ( X \ A ) = B ) -> ( X \ A ) = B ) |
14 |
13
|
difeq2d |
|- ( ( ph /\ ( X \ A ) = B ) -> ( X \ ( X \ A ) ) = ( X \ B ) ) |
15 |
|
dfss4 |
|- ( A C_ X <-> ( X \ ( X \ A ) ) = A ) |
16 |
10 15
|
sylib |
|- ( ph -> ( X \ ( X \ A ) ) = A ) |
17 |
16
|
adantr |
|- ( ( ph /\ ( X \ A ) = B ) -> ( X \ ( X \ A ) ) = A ) |
18 |
2
|
adantr |
|- ( ( ph /\ ( X \ A ) = B ) -> J e. Conn ) |
19 |
5
|
adantr |
|- ( ( ph /\ ( X \ A ) = B ) -> B e. J ) |
20 |
6
|
adantr |
|- ( ( ph /\ ( X \ A ) = B ) -> B =/= (/) ) |
21 |
1
|
isconn |
|- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
22 |
21
|
simplbi |
|- ( J e. Conn -> J e. Top ) |
23 |
2 22
|
syl |
|- ( ph -> J e. Top ) |
24 |
1
|
opncld |
|- ( ( J e. Top /\ A e. J ) -> ( X \ A ) e. ( Clsd ` J ) ) |
25 |
23 3 24
|
syl2anc |
|- ( ph -> ( X \ A ) e. ( Clsd ` J ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( X \ A ) = B ) -> ( X \ A ) e. ( Clsd ` J ) ) |
27 |
13 26
|
eqeltrrd |
|- ( ( ph /\ ( X \ A ) = B ) -> B e. ( Clsd ` J ) ) |
28 |
1 18 19 20 27
|
connclo |
|- ( ( ph /\ ( X \ A ) = B ) -> B = X ) |
29 |
28
|
difeq2d |
|- ( ( ph /\ ( X \ A ) = B ) -> ( X \ B ) = ( X \ X ) ) |
30 |
|
difid |
|- ( X \ X ) = (/) |
31 |
29 30
|
eqtrdi |
|- ( ( ph /\ ( X \ A ) = B ) -> ( X \ B ) = (/) ) |
32 |
14 17 31
|
3eqtr3d |
|- ( ( ph /\ ( X \ A ) = B ) -> A = (/) ) |
33 |
32
|
ex |
|- ( ph -> ( ( X \ A ) = B -> A = (/) ) ) |
34 |
12 33
|
sylbid |
|- ( ph -> ( ( A u. B ) = X -> A = (/) ) ) |
35 |
34
|
necon3d |
|- ( ph -> ( A =/= (/) -> ( A u. B ) =/= X ) ) |
36 |
4 35
|
mpd |
|- ( ph -> ( A u. B ) =/= X ) |