Step |
Hyp |
Ref |
Expression |
1 |
|
connima.x |
|- X = U. J |
2 |
|
connima.f |
|- ( ph -> F e. ( J Cn K ) ) |
3 |
|
connima.a |
|- ( ph -> A C_ X ) |
4 |
|
connima.c |
|- ( ph -> ( J |`t A ) e. Conn ) |
5 |
|
eqid |
|- U. K = U. K |
6 |
1 5
|
cnf |
|- ( F e. ( J Cn K ) -> F : X --> U. K ) |
7 |
2 6
|
syl |
|- ( ph -> F : X --> U. K ) |
8 |
7
|
ffund |
|- ( ph -> Fun F ) |
9 |
7
|
fdmd |
|- ( ph -> dom F = X ) |
10 |
3 9
|
sseqtrrd |
|- ( ph -> A C_ dom F ) |
11 |
|
fores |
|- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
12 |
8 10 11
|
syl2anc |
|- ( ph -> ( F |` A ) : A -onto-> ( F " A ) ) |
13 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
14 |
2 13
|
syl |
|- ( ph -> K e. Top ) |
15 |
|
imassrn |
|- ( F " A ) C_ ran F |
16 |
7
|
frnd |
|- ( ph -> ran F C_ U. K ) |
17 |
15 16
|
sstrid |
|- ( ph -> ( F " A ) C_ U. K ) |
18 |
5
|
restuni |
|- ( ( K e. Top /\ ( F " A ) C_ U. K ) -> ( F " A ) = U. ( K |`t ( F " A ) ) ) |
19 |
14 17 18
|
syl2anc |
|- ( ph -> ( F " A ) = U. ( K |`t ( F " A ) ) ) |
20 |
|
foeq3 |
|- ( ( F " A ) = U. ( K |`t ( F " A ) ) -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) ) |
21 |
19 20
|
syl |
|- ( ph -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) ) |
22 |
12 21
|
mpbid |
|- ( ph -> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) |
23 |
1
|
cnrest |
|- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |
24 |
2 3 23
|
syl2anc |
|- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |
25 |
|
toptopon2 |
|- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
26 |
14 25
|
sylib |
|- ( ph -> K e. ( TopOn ` U. K ) ) |
27 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
28 |
|
eqimss2 |
|- ( ( F " A ) = ran ( F |` A ) -> ran ( F |` A ) C_ ( F " A ) ) |
29 |
27 28
|
mp1i |
|- ( ph -> ran ( F |` A ) C_ ( F " A ) ) |
30 |
|
cnrest2 |
|- ( ( K e. ( TopOn ` U. K ) /\ ran ( F |` A ) C_ ( F " A ) /\ ( F " A ) C_ U. K ) -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) ) |
31 |
26 29 17 30
|
syl3anc |
|- ( ph -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) ) |
32 |
24 31
|
mpbid |
|- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) |
33 |
|
eqid |
|- U. ( K |`t ( F " A ) ) = U. ( K |`t ( F " A ) ) |
34 |
33
|
cnconn |
|- ( ( ( J |`t A ) e. Conn /\ ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) /\ ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) -> ( K |`t ( F " A ) ) e. Conn ) |
35 |
4 22 32 34
|
syl3anc |
|- ( ph -> ( K |`t ( F " A ) ) e. Conn ) |