| Step | Hyp | Ref | Expression | 
						
							| 1 |  | connima.x |  |-  X = U. J | 
						
							| 2 |  | connima.f |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 3 |  | connima.a |  |-  ( ph -> A C_ X ) | 
						
							| 4 |  | connima.c |  |-  ( ph -> ( J |`t A ) e. Conn ) | 
						
							| 5 |  | eqid |  |-  U. K = U. K | 
						
							| 6 | 1 5 | cnf |  |-  ( F e. ( J Cn K ) -> F : X --> U. K ) | 
						
							| 7 | 2 6 | syl |  |-  ( ph -> F : X --> U. K ) | 
						
							| 8 | 7 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 9 | 7 | fdmd |  |-  ( ph -> dom F = X ) | 
						
							| 10 | 3 9 | sseqtrrd |  |-  ( ph -> A C_ dom F ) | 
						
							| 11 |  | fores |  |-  ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) | 
						
							| 12 | 8 10 11 | syl2anc |  |-  ( ph -> ( F |` A ) : A -onto-> ( F " A ) ) | 
						
							| 13 |  | cntop2 |  |-  ( F e. ( J Cn K ) -> K e. Top ) | 
						
							| 14 | 2 13 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 15 |  | imassrn |  |-  ( F " A ) C_ ran F | 
						
							| 16 | 7 | frnd |  |-  ( ph -> ran F C_ U. K ) | 
						
							| 17 | 15 16 | sstrid |  |-  ( ph -> ( F " A ) C_ U. K ) | 
						
							| 18 | 5 | restuni |  |-  ( ( K e. Top /\ ( F " A ) C_ U. K ) -> ( F " A ) = U. ( K |`t ( F " A ) ) ) | 
						
							| 19 | 14 17 18 | syl2anc |  |-  ( ph -> ( F " A ) = U. ( K |`t ( F " A ) ) ) | 
						
							| 20 |  | foeq3 |  |-  ( ( F " A ) = U. ( K |`t ( F " A ) ) -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) ) | 
						
							| 22 | 12 21 | mpbid |  |-  ( ph -> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) | 
						
							| 23 | 1 | cnrest |  |-  ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) | 
						
							| 24 | 2 3 23 | syl2anc |  |-  ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) | 
						
							| 25 |  | toptopon2 |  |-  ( K e. Top <-> K e. ( TopOn ` U. K ) ) | 
						
							| 26 | 14 25 | sylib |  |-  ( ph -> K e. ( TopOn ` U. K ) ) | 
						
							| 27 |  | df-ima |  |-  ( F " A ) = ran ( F |` A ) | 
						
							| 28 |  | eqimss2 |  |-  ( ( F " A ) = ran ( F |` A ) -> ran ( F |` A ) C_ ( F " A ) ) | 
						
							| 29 | 27 28 | mp1i |  |-  ( ph -> ran ( F |` A ) C_ ( F " A ) ) | 
						
							| 30 |  | cnrest2 |  |-  ( ( K e. ( TopOn ` U. K ) /\ ran ( F |` A ) C_ ( F " A ) /\ ( F " A ) C_ U. K ) -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) ) | 
						
							| 31 | 26 29 17 30 | syl3anc |  |-  ( ph -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) ) | 
						
							| 32 | 24 31 | mpbid |  |-  ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) | 
						
							| 33 |  | eqid |  |-  U. ( K |`t ( F " A ) ) = U. ( K |`t ( F " A ) ) | 
						
							| 34 | 33 | cnconn |  |-  ( ( ( J |`t A ) e. Conn /\ ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) /\ ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) -> ( K |`t ( F " A ) ) e. Conn ) | 
						
							| 35 | 4 22 32 34 | syl3anc |  |-  ( ph -> ( K |`t ( F " A ) ) e. Conn ) |