| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resttopon |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) | 
						
							| 2 |  | dfconn2 |  |-  ( ( J |`t A ) e. ( TopOn ` A ) -> ( ( J |`t A ) e. Conn <-> A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) ) ) | 
						
							| 4 |  | vex |  |-  x e. _V | 
						
							| 5 | 4 | inex1 |  |-  ( x i^i A ) e. _V | 
						
							| 6 | 5 | a1i |  |-  ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ x e. J ) -> ( x i^i A ) e. _V ) | 
						
							| 7 |  | toponmax |  |-  ( J e. ( TopOn ` X ) -> X e. J ) | 
						
							| 8 | 7 | adantr |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> X e. J ) | 
						
							| 9 |  | simpr |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A C_ X ) | 
						
							| 10 | 8 9 | ssexd |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A e. _V ) | 
						
							| 11 |  | elrest |  |-  ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( u e. ( J |`t A ) <-> E. x e. J u = ( x i^i A ) ) ) | 
						
							| 12 | 10 11 | syldan |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( u e. ( J |`t A ) <-> E. x e. J u = ( x i^i A ) ) ) | 
						
							| 13 |  | vex |  |-  y e. _V | 
						
							| 14 | 13 | inex1 |  |-  ( y i^i A ) e. _V | 
						
							| 15 | 14 | a1i |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ y e. J ) -> ( y i^i A ) e. _V ) | 
						
							| 16 |  | elrest |  |-  ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) | 
						
							| 17 | 10 16 | syldan |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) | 
						
							| 19 |  | simplr |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> u = ( x i^i A ) ) | 
						
							| 20 | 19 | neeq1d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u =/= (/) <-> ( x i^i A ) =/= (/) ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> v = ( y i^i A ) ) | 
						
							| 22 | 21 | neeq1d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( v =/= (/) <-> ( y i^i A ) =/= (/) ) ) | 
						
							| 23 | 19 21 | ineq12d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u i^i v ) = ( ( x i^i A ) i^i ( y i^i A ) ) ) | 
						
							| 24 |  | inindir |  |-  ( ( x i^i y ) i^i A ) = ( ( x i^i A ) i^i ( y i^i A ) ) | 
						
							| 25 | 23 24 | eqtr4di |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u i^i v ) = ( ( x i^i y ) i^i A ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u i^i v ) = (/) <-> ( ( x i^i y ) i^i A ) = (/) ) ) | 
						
							| 27 | 20 22 26 | 3anbi123d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) <-> ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) ) ) | 
						
							| 28 | 19 21 | uneq12d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u u. v ) = ( ( x i^i A ) u. ( y i^i A ) ) ) | 
						
							| 29 |  | indir |  |-  ( ( x u. y ) i^i A ) = ( ( x i^i A ) u. ( y i^i A ) ) | 
						
							| 30 | 28 29 | eqtr4di |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u u. v ) = ( ( x u. y ) i^i A ) ) | 
						
							| 31 | 30 | neeq1d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u u. v ) =/= A <-> ( ( x u. y ) i^i A ) =/= A ) ) | 
						
							| 32 | 27 31 | imbi12d |  |-  ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) | 
						
							| 33 | 15 18 32 | ralxfr2d |  |-  ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) -> ( A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) | 
						
							| 34 | 6 12 33 | ralxfr2d |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) | 
						
							| 35 | 3 34 | bitrd |  |-  ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |