Step |
Hyp |
Ref |
Expression |
1 |
|
resttopon |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
2 |
|
dfconn2 |
|- ( ( J |`t A ) e. ( TopOn ` A ) -> ( ( J |`t A ) e. Conn <-> A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) ) ) |
3 |
1 2
|
syl |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) ) ) |
4 |
|
vex |
|- x e. _V |
5 |
4
|
inex1 |
|- ( x i^i A ) e. _V |
6 |
5
|
a1i |
|- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ x e. J ) -> ( x i^i A ) e. _V ) |
7 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
8 |
7
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> X e. J ) |
9 |
|
simpr |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A C_ X ) |
10 |
8 9
|
ssexd |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A e. _V ) |
11 |
|
elrest |
|- ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( u e. ( J |`t A ) <-> E. x e. J u = ( x i^i A ) ) ) |
12 |
10 11
|
syldan |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( u e. ( J |`t A ) <-> E. x e. J u = ( x i^i A ) ) ) |
13 |
|
vex |
|- y e. _V |
14 |
13
|
inex1 |
|- ( y i^i A ) e. _V |
15 |
14
|
a1i |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ y e. J ) -> ( y i^i A ) e. _V ) |
16 |
|
elrest |
|- ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) |
17 |
10 16
|
syldan |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) |
18 |
17
|
adantr |
|- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) -> ( v e. ( J |`t A ) <-> E. y e. J v = ( y i^i A ) ) ) |
19 |
|
simplr |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> u = ( x i^i A ) ) |
20 |
19
|
neeq1d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u =/= (/) <-> ( x i^i A ) =/= (/) ) ) |
21 |
|
simpr |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> v = ( y i^i A ) ) |
22 |
21
|
neeq1d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( v =/= (/) <-> ( y i^i A ) =/= (/) ) ) |
23 |
19 21
|
ineq12d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u i^i v ) = ( ( x i^i A ) i^i ( y i^i A ) ) ) |
24 |
|
inindir |
|- ( ( x i^i y ) i^i A ) = ( ( x i^i A ) i^i ( y i^i A ) ) |
25 |
23 24
|
eqtr4di |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u i^i v ) = ( ( x i^i y ) i^i A ) ) |
26 |
25
|
eqeq1d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u i^i v ) = (/) <-> ( ( x i^i y ) i^i A ) = (/) ) ) |
27 |
20 22 26
|
3anbi123d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) <-> ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) ) ) |
28 |
19 21
|
uneq12d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u u. v ) = ( ( x i^i A ) u. ( y i^i A ) ) ) |
29 |
|
indir |
|- ( ( x u. y ) i^i A ) = ( ( x i^i A ) u. ( y i^i A ) ) |
30 |
28 29
|
eqtr4di |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( u u. v ) = ( ( x u. y ) i^i A ) ) |
31 |
30
|
neeq1d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( u u. v ) =/= A <-> ( ( x u. y ) i^i A ) =/= A ) ) |
32 |
27 31
|
imbi12d |
|- ( ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) /\ v = ( y i^i A ) ) -> ( ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
33 |
15 18 32
|
ralxfr2d |
|- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ u = ( x i^i A ) ) -> ( A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
34 |
6 12 33
|
ralxfr2d |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( A. u e. ( J |`t A ) A. v e. ( J |`t A ) ( ( u =/= (/) /\ v =/= (/) /\ ( u i^i v ) = (/) ) -> ( u u. v ) =/= A ) <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
35 |
3 34
|
bitrd |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |