| Step | Hyp | Ref | Expression | 
						
							| 1 |  | connsubclo.1 |  |-  X = U. J | 
						
							| 2 |  | connsubclo.3 |  |-  ( ph -> A C_ X ) | 
						
							| 3 |  | connsubclo.4 |  |-  ( ph -> ( J |`t A ) e. Conn ) | 
						
							| 4 |  | connsubclo.5 |  |-  ( ph -> B e. J ) | 
						
							| 5 |  | connsubclo.6 |  |-  ( ph -> ( B i^i A ) =/= (/) ) | 
						
							| 6 |  | connsubclo.7 |  |-  ( ph -> B e. ( Clsd ` J ) ) | 
						
							| 7 |  | eqid |  |-  U. ( J |`t A ) = U. ( J |`t A ) | 
						
							| 8 |  | cldrcl |  |-  ( B e. ( Clsd ` J ) -> J e. Top ) | 
						
							| 9 | 6 8 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 10 | 1 | topopn |  |-  ( J e. Top -> X e. J ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> X e. J ) | 
						
							| 12 | 11 2 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 13 |  | elrestr |  |-  ( ( J e. Top /\ A e. _V /\ B e. J ) -> ( B i^i A ) e. ( J |`t A ) ) | 
						
							| 14 | 9 12 4 13 | syl3anc |  |-  ( ph -> ( B i^i A ) e. ( J |`t A ) ) | 
						
							| 15 |  | eqid |  |-  ( B i^i A ) = ( B i^i A ) | 
						
							| 16 |  | ineq1 |  |-  ( x = B -> ( x i^i A ) = ( B i^i A ) ) | 
						
							| 17 | 16 | rspceeqv |  |-  ( ( B e. ( Clsd ` J ) /\ ( B i^i A ) = ( B i^i A ) ) -> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) | 
						
							| 18 | 6 15 17 | sylancl |  |-  ( ph -> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) | 
						
							| 19 | 1 | restcld |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) <-> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) ) | 
						
							| 20 | 9 2 19 | syl2anc |  |-  ( ph -> ( ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) <-> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) ) | 
						
							| 21 | 18 20 | mpbird |  |-  ( ph -> ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) ) | 
						
							| 22 | 7 3 14 5 21 | connclo |  |-  ( ph -> ( B i^i A ) = U. ( J |`t A ) ) | 
						
							| 23 | 1 | restuni |  |-  ( ( J e. Top /\ A C_ X ) -> A = U. ( J |`t A ) ) | 
						
							| 24 | 9 2 23 | syl2anc |  |-  ( ph -> A = U. ( J |`t A ) ) | 
						
							| 25 | 22 24 | eqtr4d |  |-  ( ph -> ( B i^i A ) = A ) | 
						
							| 26 |  | sseqin2 |  |-  ( A C_ B <-> ( B i^i A ) = A ) | 
						
							| 27 | 25 26 | sylibr |  |-  ( ph -> A C_ B ) |