Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
2 |
|
orc |
|- ( ( ph /\ ps ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
3 |
2
|
adantrr |
|- ( ( ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
4 |
|
olc |
|- ( ( -. ph /\ ch ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
5 |
4
|
adantrl |
|- ( ( -. ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
6 |
3 5
|
pm2.61ian |
|- ( ( ps /\ ch ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
7 |
1 6
|
jaoi |
|- ( ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
8 |
|
orc |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) ) |
9 |
7 8
|
impbii |
|- ( ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) \/ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |