Step |
Hyp |
Ref |
Expression |
1 |
|
constlimc.f |
|- F = ( x e. A |-> B ) |
2 |
|
constlimc.a |
|- ( ph -> A C_ CC ) |
3 |
|
constlimc.b |
|- ( ph -> B e. CC ) |
4 |
|
constlimc.c |
|- ( ph -> C e. CC ) |
5 |
|
1rp |
|- 1 e. RR+ |
6 |
5
|
a1i |
|- ( ( ph /\ y e. RR+ ) -> 1 e. RR+ ) |
7 |
|
simpr |
|- ( ( ph /\ v e. A ) -> v e. A ) |
8 |
|
vex |
|- v e. _V |
9 |
|
nfcv |
|- F/_ x B |
10 |
|
csbtt |
|- ( ( v e. _V /\ F/_ x B ) -> [_ v / x ]_ B = B ) |
11 |
8 9 10
|
mp2an |
|- [_ v / x ]_ B = B |
12 |
11 3
|
eqeltrid |
|- ( ph -> [_ v / x ]_ B e. CC ) |
13 |
12
|
adantr |
|- ( ( ph /\ v e. A ) -> [_ v / x ]_ B e. CC ) |
14 |
1
|
fvmpts |
|- ( ( v e. A /\ [_ v / x ]_ B e. CC ) -> ( F ` v ) = [_ v / x ]_ B ) |
15 |
7 13 14
|
syl2anc |
|- ( ( ph /\ v e. A ) -> ( F ` v ) = [_ v / x ]_ B ) |
16 |
15
|
oveq1d |
|- ( ( ph /\ v e. A ) -> ( ( F ` v ) - B ) = ( [_ v / x ]_ B - B ) ) |
17 |
11
|
oveq1i |
|- ( [_ v / x ]_ B - B ) = ( B - B ) |
18 |
16 17
|
eqtrdi |
|- ( ( ph /\ v e. A ) -> ( ( F ` v ) - B ) = ( B - B ) ) |
19 |
18
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) = ( abs ` ( B - B ) ) ) |
20 |
3
|
subidd |
|- ( ph -> ( B - B ) = 0 ) |
21 |
20
|
fveq2d |
|- ( ph -> ( abs ` ( B - B ) ) = ( abs ` 0 ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ v e. A ) -> ( abs ` ( B - B ) ) = ( abs ` 0 ) ) |
23 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
24 |
23
|
a1i |
|- ( ( ph /\ v e. A ) -> ( abs ` 0 ) = 0 ) |
25 |
19 22 24
|
3eqtrd |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) = 0 ) |
26 |
25
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) = 0 ) |
27 |
|
rpgt0 |
|- ( y e. RR+ -> 0 < y ) |
28 |
27
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> 0 < y ) |
29 |
26 28
|
eqbrtrd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) |
30 |
29
|
a1d |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( v =/= C /\ ( abs ` ( v - C ) ) < 1 ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
31 |
30
|
ralrimiva |
|- ( ( ph /\ y e. RR+ ) -> A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < 1 ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
32 |
|
brimralrspcev |
|- ( ( 1 e. RR+ /\ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < 1 ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) -> E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
33 |
6 31 32
|
syl2anc |
|- ( ( ph /\ y e. RR+ ) -> E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
34 |
33
|
ralrimiva |
|- ( ph -> A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) |
35 |
3
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
36 |
35 1
|
fmptd |
|- ( ph -> F : A --> CC ) |
37 |
36 2 4
|
ellimc3 |
|- ( ph -> ( B e. ( F limCC C ) <-> ( B e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= C /\ ( abs ` ( v - C ) ) < w ) -> ( abs ` ( ( F ` v ) - B ) ) < y ) ) ) ) |
38 |
3 34 37
|
mpbir2and |
|- ( ph -> B e. ( F limCC C ) ) |