Step |
Hyp |
Ref |
Expression |
1 |
|
coof.f |
|- ( ph -> F : A --> B ) |
2 |
|
coof.g |
|- ( ph -> G : A --> B ) |
3 |
|
coof.h |
|- ( ph -> H Fn B ) |
4 |
|
coof.a |
|- ( ph -> A e. V ) |
5 |
|
coof.1 |
|- ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( b R c ) e. B ) |
6 |
|
coof.2 |
|- ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) |
7 |
1
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
8 |
2
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. B ) |
9 |
6
|
ralrimivva |
|- ( ph -> A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. A ) -> A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) |
11 |
|
fvoveq1 |
|- ( b = ( F ` x ) -> ( H ` ( b R c ) ) = ( H ` ( ( F ` x ) R c ) ) ) |
12 |
|
fveq2 |
|- ( b = ( F ` x ) -> ( H ` b ) = ( H ` ( F ` x ) ) ) |
13 |
12
|
oveq1d |
|- ( b = ( F ` x ) -> ( ( H ` b ) S ( H ` c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) ) |
14 |
11 13
|
eqeq12d |
|- ( b = ( F ` x ) -> ( ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) <-> ( H ` ( ( F ` x ) R c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) ) ) |
15 |
|
oveq2 |
|- ( c = ( G ` x ) -> ( ( F ` x ) R c ) = ( ( F ` x ) R ( G ` x ) ) ) |
16 |
15
|
fveq2d |
|- ( c = ( G ` x ) -> ( H ` ( ( F ` x ) R c ) ) = ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) |
17 |
|
fveq2 |
|- ( c = ( G ` x ) -> ( H ` c ) = ( H ` ( G ` x ) ) ) |
18 |
17
|
oveq2d |
|- ( c = ( G ` x ) -> ( ( H ` ( F ` x ) ) S ( H ` c ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) |
19 |
16 18
|
eqeq12d |
|- ( c = ( G ` x ) -> ( ( H ` ( ( F ` x ) R c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) <-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) |
20 |
14 19
|
rspc2va |
|- ( ( ( ( F ` x ) e. B /\ ( G ` x ) e. B ) /\ A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) -> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) |
21 |
7 8 10 20
|
syl21anc |
|- ( ( ph /\ x e. A ) -> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) |
22 |
21
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) = ( x e. A |-> ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) |
23 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
24 |
2
|
ffnd |
|- ( ph -> G Fn A ) |
25 |
|
inidm |
|- ( A i^i A ) = A |
26 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
27 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
28 |
23 24 4 4 25 26 27
|
offval |
|- ( ph -> ( F oF R G ) = ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
29 |
28
|
coeq2d |
|- ( ph -> ( H o. ( F oF R G ) ) = ( H o. ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) ) |
30 |
|
dffn3 |
|- ( H Fn B <-> H : B --> ran H ) |
31 |
3 30
|
sylib |
|- ( ph -> H : B --> ran H ) |
32 |
7 8
|
jca |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) e. B /\ ( G ` x ) e. B ) ) |
33 |
5
|
caovclg |
|- ( ( ph /\ ( ( F ` x ) e. B /\ ( G ` x ) e. B ) ) -> ( ( F ` x ) R ( G ` x ) ) e. B ) |
34 |
32 33
|
syldan |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) R ( G ` x ) ) e. B ) |
35 |
31 34
|
cofmpt |
|- ( ph -> ( H o. ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) = ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) ) |
36 |
29 35
|
eqtrd |
|- ( ph -> ( H o. ( F oF R G ) ) = ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) ) |
37 |
|
fnfco |
|- ( ( H Fn B /\ F : A --> B ) -> ( H o. F ) Fn A ) |
38 |
3 1 37
|
syl2anc |
|- ( ph -> ( H o. F ) Fn A ) |
39 |
|
fnfco |
|- ( ( H Fn B /\ G : A --> B ) -> ( H o. G ) Fn A ) |
40 |
3 2 39
|
syl2anc |
|- ( ph -> ( H o. G ) Fn A ) |
41 |
|
fvco2 |
|- ( ( F Fn A /\ x e. A ) -> ( ( H o. F ) ` x ) = ( H ` ( F ` x ) ) ) |
42 |
23 41
|
sylan |
|- ( ( ph /\ x e. A ) -> ( ( H o. F ) ` x ) = ( H ` ( F ` x ) ) ) |
43 |
|
fvco2 |
|- ( ( G Fn A /\ x e. A ) -> ( ( H o. G ) ` x ) = ( H ` ( G ` x ) ) ) |
44 |
24 43
|
sylan |
|- ( ( ph /\ x e. A ) -> ( ( H o. G ) ` x ) = ( H ` ( G ` x ) ) ) |
45 |
38 40 4 4 25 42 44
|
offval |
|- ( ph -> ( ( H o. F ) oF S ( H o. G ) ) = ( x e. A |-> ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) |
46 |
22 36 45
|
3eqtr4d |
|- ( ph -> ( H o. ( F oF R G ) ) = ( ( H o. F ) oF S ( H o. G ) ) ) |