| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coof.f |  |-  ( ph -> F : A --> B ) | 
						
							| 2 |  | coof.g |  |-  ( ph -> G : A --> B ) | 
						
							| 3 |  | coof.h |  |-  ( ph -> H Fn B ) | 
						
							| 4 |  | coof.a |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | coof.1 |  |-  ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( b R c ) e. B ) | 
						
							| 6 |  | coof.2 |  |-  ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) | 
						
							| 7 | 1 | ffvelcdmda |  |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 8 | 2 | ffvelcdmda |  |-  ( ( ph /\ x e. A ) -> ( G ` x ) e. B ) | 
						
							| 9 | 6 | ralrimivva |  |-  ( ph -> A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ x e. A ) -> A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) | 
						
							| 11 |  | fvoveq1 |  |-  ( b = ( F ` x ) -> ( H ` ( b R c ) ) = ( H ` ( ( F ` x ) R c ) ) ) | 
						
							| 12 |  | fveq2 |  |-  ( b = ( F ` x ) -> ( H ` b ) = ( H ` ( F ` x ) ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( b = ( F ` x ) -> ( ( H ` b ) S ( H ` c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) ) | 
						
							| 14 | 11 13 | eqeq12d |  |-  ( b = ( F ` x ) -> ( ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) <-> ( H ` ( ( F ` x ) R c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( c = ( G ` x ) -> ( ( F ` x ) R c ) = ( ( F ` x ) R ( G ` x ) ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( c = ( G ` x ) -> ( H ` ( ( F ` x ) R c ) ) = ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) | 
						
							| 17 |  | fveq2 |  |-  ( c = ( G ` x ) -> ( H ` c ) = ( H ` ( G ` x ) ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( c = ( G ` x ) -> ( ( H ` ( F ` x ) ) S ( H ` c ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) | 
						
							| 19 | 16 18 | eqeq12d |  |-  ( c = ( G ` x ) -> ( ( H ` ( ( F ` x ) R c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) <-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) | 
						
							| 20 | 14 19 | rspc2va |  |-  ( ( ( ( F ` x ) e. B /\ ( G ` x ) e. B ) /\ A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) -> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) | 
						
							| 21 | 7 8 10 20 | syl21anc |  |-  ( ( ph /\ x e. A ) -> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) | 
						
							| 22 | 21 | mpteq2dva |  |-  ( ph -> ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) = ( x e. A |-> ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) | 
						
							| 23 | 1 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 24 | 2 | ffnd |  |-  ( ph -> G Fn A ) | 
						
							| 25 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 26 |  | eqidd |  |-  ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 27 |  | eqidd |  |-  ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) | 
						
							| 28 | 23 24 4 4 25 26 27 | offval |  |-  ( ph -> ( F oF R G ) = ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) | 
						
							| 29 | 28 | coeq2d |  |-  ( ph -> ( H o. ( F oF R G ) ) = ( H o. ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) ) | 
						
							| 30 |  | dffn3 |  |-  ( H Fn B <-> H : B --> ran H ) | 
						
							| 31 | 3 30 | sylib |  |-  ( ph -> H : B --> ran H ) | 
						
							| 32 | 7 8 | jca |  |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) e. B /\ ( G ` x ) e. B ) ) | 
						
							| 33 | 5 | caovclg |  |-  ( ( ph /\ ( ( F ` x ) e. B /\ ( G ` x ) e. B ) ) -> ( ( F ` x ) R ( G ` x ) ) e. B ) | 
						
							| 34 | 32 33 | syldan |  |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) R ( G ` x ) ) e. B ) | 
						
							| 35 | 31 34 | cofmpt |  |-  ( ph -> ( H o. ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) = ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) ) | 
						
							| 36 | 29 35 | eqtrd |  |-  ( ph -> ( H o. ( F oF R G ) ) = ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) ) | 
						
							| 37 |  | fnfco |  |-  ( ( H Fn B /\ F : A --> B ) -> ( H o. F ) Fn A ) | 
						
							| 38 | 3 1 37 | syl2anc |  |-  ( ph -> ( H o. F ) Fn A ) | 
						
							| 39 |  | fnfco |  |-  ( ( H Fn B /\ G : A --> B ) -> ( H o. G ) Fn A ) | 
						
							| 40 | 3 2 39 | syl2anc |  |-  ( ph -> ( H o. G ) Fn A ) | 
						
							| 41 |  | fvco2 |  |-  ( ( F Fn A /\ x e. A ) -> ( ( H o. F ) ` x ) = ( H ` ( F ` x ) ) ) | 
						
							| 42 | 23 41 | sylan |  |-  ( ( ph /\ x e. A ) -> ( ( H o. F ) ` x ) = ( H ` ( F ` x ) ) ) | 
						
							| 43 |  | fvco2 |  |-  ( ( G Fn A /\ x e. A ) -> ( ( H o. G ) ` x ) = ( H ` ( G ` x ) ) ) | 
						
							| 44 | 24 43 | sylan |  |-  ( ( ph /\ x e. A ) -> ( ( H o. G ) ` x ) = ( H ` ( G ` x ) ) ) | 
						
							| 45 | 38 40 4 4 25 42 44 | offval |  |-  ( ph -> ( ( H o. F ) oF S ( H o. G ) ) = ( x e. A |-> ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) | 
						
							| 46 | 22 36 45 | 3eqtr4d |  |-  ( ph -> ( H o. ( F oF R G ) ) = ( ( H o. F ) oF S ( H o. G ) ) ) |