Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
2 |
|
nn0z |
|- ( C e. NN0 -> C e. ZZ ) |
3 |
|
gcdcl |
|- ( ( A e. ZZ /\ C e. ZZ ) -> ( A gcd C ) e. NN0 ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. NN0 /\ C e. NN0 ) -> ( A gcd C ) e. NN0 ) |
5 |
4
|
3adant2 |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd C ) e. NN0 ) |
6 |
5
|
3ad2ant1 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A gcd C ) e. NN0 ) |
7 |
6
|
nn0cnd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A gcd C ) e. CC ) |
8 |
7
|
sqvald |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A gcd C ) ^ 2 ) = ( ( A gcd C ) x. ( A gcd C ) ) ) |
9 |
|
simp13 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> C e. NN0 ) |
10 |
9
|
nn0cnd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> C e. CC ) |
11 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
12 |
11
|
3ad2ant1 |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> A e. CC ) |
13 |
12
|
3ad2ant1 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A e. CC ) |
14 |
10 13
|
mulcomd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C x. A ) = ( A x. C ) ) |
15 |
|
simpl3 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> C e. NN0 ) |
16 |
15
|
nn0cnd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> C e. CC ) |
17 |
16
|
sqvald |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( C ^ 2 ) = ( C x. C ) ) |
18 |
17
|
eqeq1d |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) <-> ( C x. C ) = ( A x. B ) ) ) |
19 |
18
|
biimp3a |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C x. C ) = ( A x. B ) ) |
20 |
14 19
|
oveq12d |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( C x. A ) gcd ( C x. C ) ) = ( ( A x. C ) gcd ( A x. B ) ) ) |
21 |
|
simp11 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A e. NN0 ) |
22 |
21
|
nn0zd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A e. ZZ ) |
23 |
9
|
nn0zd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> C e. ZZ ) |
24 |
|
mulgcd |
|- ( ( C e. NN0 /\ A e. ZZ /\ C e. ZZ ) -> ( ( C x. A ) gcd ( C x. C ) ) = ( C x. ( A gcd C ) ) ) |
25 |
9 22 23 24
|
syl3anc |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( C x. A ) gcd ( C x. C ) ) = ( C x. ( A gcd C ) ) ) |
26 |
|
simp12 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> B e. ZZ ) |
27 |
|
mulgcd |
|- ( ( A e. NN0 /\ C e. ZZ /\ B e. ZZ ) -> ( ( A x. C ) gcd ( A x. B ) ) = ( A x. ( C gcd B ) ) ) |
28 |
21 23 26 27
|
syl3anc |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. C ) gcd ( A x. B ) ) = ( A x. ( C gcd B ) ) ) |
29 |
20 25 28
|
3eqtr3d |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C x. ( A gcd C ) ) = ( A x. ( C gcd B ) ) ) |
30 |
29
|
oveq2d |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. ( A gcd C ) ) gcd ( C x. ( A gcd C ) ) ) = ( ( A x. ( A gcd C ) ) gcd ( A x. ( C gcd B ) ) ) ) |
31 |
|
mulgcdr |
|- ( ( A e. ZZ /\ C e. ZZ /\ ( A gcd C ) e. NN0 ) -> ( ( A x. ( A gcd C ) ) gcd ( C x. ( A gcd C ) ) ) = ( ( A gcd C ) x. ( A gcd C ) ) ) |
32 |
22 23 6 31
|
syl3anc |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. ( A gcd C ) ) gcd ( C x. ( A gcd C ) ) ) = ( ( A gcd C ) x. ( A gcd C ) ) ) |
33 |
6
|
nn0zd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A gcd C ) e. ZZ ) |
34 |
|
gcdcl |
|- ( ( C e. ZZ /\ B e. ZZ ) -> ( C gcd B ) e. NN0 ) |
35 |
2 34
|
sylan |
|- ( ( C e. NN0 /\ B e. ZZ ) -> ( C gcd B ) e. NN0 ) |
36 |
35
|
ancoms |
|- ( ( B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) e. NN0 ) |
37 |
36
|
3adant1 |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) e. NN0 ) |
38 |
37
|
3ad2ant1 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C gcd B ) e. NN0 ) |
39 |
38
|
nn0zd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C gcd B ) e. ZZ ) |
40 |
|
mulgcd |
|- ( ( A e. NN0 /\ ( A gcd C ) e. ZZ /\ ( C gcd B ) e. ZZ ) -> ( ( A x. ( A gcd C ) ) gcd ( A x. ( C gcd B ) ) ) = ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) ) |
41 |
21 33 39 40
|
syl3anc |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. ( A gcd C ) ) gcd ( A x. ( C gcd B ) ) ) = ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) ) |
42 |
30 32 41
|
3eqtr3d |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A gcd C ) x. ( A gcd C ) ) = ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) ) |
43 |
2
|
3ad2ant3 |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> C e. ZZ ) |
44 |
|
gcdid |
|- ( C e. ZZ -> ( C gcd C ) = ( abs ` C ) ) |
45 |
43 44
|
syl |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd C ) = ( abs ` C ) ) |
46 |
45
|
oveq1d |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( C gcd C ) gcd B ) = ( ( abs ` C ) gcd B ) ) |
47 |
|
simp2 |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> B e. ZZ ) |
48 |
|
gcdabs1 |
|- ( ( C e. ZZ /\ B e. ZZ ) -> ( ( abs ` C ) gcd B ) = ( C gcd B ) ) |
49 |
43 47 48
|
syl2anc |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( abs ` C ) gcd B ) = ( C gcd B ) ) |
50 |
46 49
|
eqtrd |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( C gcd C ) gcd B ) = ( C gcd B ) ) |
51 |
|
gcdass |
|- ( ( C e. ZZ /\ C e. ZZ /\ B e. ZZ ) -> ( ( C gcd C ) gcd B ) = ( C gcd ( C gcd B ) ) ) |
52 |
43 43 47 51
|
syl3anc |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( C gcd C ) gcd B ) = ( C gcd ( C gcd B ) ) ) |
53 |
43 47
|
gcdcomd |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) = ( B gcd C ) ) |
54 |
50 52 53
|
3eqtr3d |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd ( C gcd B ) ) = ( B gcd C ) ) |
55 |
54
|
oveq2d |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd ( C gcd ( C gcd B ) ) ) = ( A gcd ( B gcd C ) ) ) |
56 |
1
|
3ad2ant1 |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> A e. ZZ ) |
57 |
37
|
nn0zd |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) e. ZZ ) |
58 |
|
gcdass |
|- ( ( A e. ZZ /\ C e. ZZ /\ ( C gcd B ) e. ZZ ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = ( A gcd ( C gcd ( C gcd B ) ) ) ) |
59 |
56 43 57 58
|
syl3anc |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = ( A gcd ( C gcd ( C gcd B ) ) ) ) |
60 |
|
gcdass |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A gcd B ) gcd C ) = ( A gcd ( B gcd C ) ) ) |
61 |
56 47 43 60
|
syl3anc |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd B ) gcd C ) = ( A gcd ( B gcd C ) ) ) |
62 |
55 59 61
|
3eqtr4d |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = ( ( A gcd B ) gcd C ) ) |
63 |
62
|
eqeq1d |
|- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( ( A gcd C ) gcd ( C gcd B ) ) = 1 <-> ( ( A gcd B ) gcd C ) = 1 ) ) |
64 |
63
|
biimpar |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = 1 ) |
65 |
64
|
oveq2d |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) = ( A x. 1 ) ) |
66 |
65
|
3adant3 |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) = ( A x. 1 ) ) |
67 |
13
|
mulid1d |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A x. 1 ) = A ) |
68 |
66 67
|
eqtrd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) = A ) |
69 |
8 42 68
|
3eqtrrd |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A = ( ( A gcd C ) ^ 2 ) ) |
70 |
69
|
3expia |
|- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> A = ( ( A gcd C ) ^ 2 ) ) ) |