Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
2 |
|
nn0cn |
|- ( B e. NN0 -> B e. CC ) |
3 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A x. B ) = ( B x. A ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) -> ( A x. B ) = ( B x. A ) ) |
6 |
5
|
adantr |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( A x. B ) = ( B x. A ) ) |
7 |
6
|
eqeq2d |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) <-> ( C ^ 2 ) = ( B x. A ) ) ) |
8 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> B e. NN0 ) |
9 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> A e. ZZ ) |
10 |
|
simpl3 |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> C e. NN0 ) |
11 |
|
nn0z |
|- ( B e. NN0 -> B e. ZZ ) |
12 |
|
gcdcom |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
13 |
12
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) gcd C ) = ( ( B gcd A ) gcd C ) ) |
14 |
13
|
eqeq1d |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A gcd B ) gcd C ) = 1 <-> ( ( B gcd A ) gcd C ) = 1 ) ) |
15 |
11 14
|
sylan2 |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A gcd B ) gcd C ) = 1 <-> ( ( B gcd A ) gcd C ) = 1 ) ) |
16 |
15
|
3adant3 |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A gcd B ) gcd C ) = 1 <-> ( ( B gcd A ) gcd C ) = 1 ) ) |
17 |
16
|
biimpa |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( B gcd A ) gcd C ) = 1 ) |
18 |
|
coprimeprodsq |
|- ( ( ( B e. NN0 /\ A e. ZZ /\ C e. NN0 ) /\ ( ( B gcd A ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( B x. A ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
19 |
8 9 10 17 18
|
syl31anc |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( B x. A ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
20 |
7 19
|
sylbid |
|- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |