Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
2 |
|
gcddvds |
|- ( ( P e. ZZ /\ N e. ZZ ) -> ( ( P gcd N ) || P /\ ( P gcd N ) || N ) ) |
3 |
1 2
|
sylan |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) || P /\ ( P gcd N ) || N ) ) |
4 |
3
|
simprd |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) || N ) |
5 |
|
breq1 |
|- ( ( P gcd N ) = P -> ( ( P gcd N ) || N <-> P || N ) ) |
6 |
4 5
|
syl5ibcom |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) = P -> P || N ) ) |
7 |
6
|
con3d |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N -> -. ( P gcd N ) = P ) ) |
8 |
|
0nnn |
|- -. 0 e. NN |
9 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
10 |
|
eleq1 |
|- ( P = 0 -> ( P e. NN <-> 0 e. NN ) ) |
11 |
9 10
|
syl5ibcom |
|- ( P e. Prime -> ( P = 0 -> 0 e. NN ) ) |
12 |
8 11
|
mtoi |
|- ( P e. Prime -> -. P = 0 ) |
13 |
12
|
intnanrd |
|- ( P e. Prime -> -. ( P = 0 /\ N = 0 ) ) |
14 |
13
|
adantr |
|- ( ( P e. Prime /\ N e. ZZ ) -> -. ( P = 0 /\ N = 0 ) ) |
15 |
|
gcdn0cl |
|- ( ( ( P e. ZZ /\ N e. ZZ ) /\ -. ( P = 0 /\ N = 0 ) ) -> ( P gcd N ) e. NN ) |
16 |
15
|
ex |
|- ( ( P e. ZZ /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( P gcd N ) e. NN ) ) |
17 |
1 16
|
sylan |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( P gcd N ) e. NN ) ) |
18 |
14 17
|
mpd |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) e. NN ) |
19 |
3
|
simpld |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) || P ) |
20 |
|
isprm2 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
21 |
20
|
simprbi |
|- ( P e. Prime -> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
22 |
|
breq1 |
|- ( z = ( P gcd N ) -> ( z || P <-> ( P gcd N ) || P ) ) |
23 |
|
eqeq1 |
|- ( z = ( P gcd N ) -> ( z = 1 <-> ( P gcd N ) = 1 ) ) |
24 |
|
eqeq1 |
|- ( z = ( P gcd N ) -> ( z = P <-> ( P gcd N ) = P ) ) |
25 |
23 24
|
orbi12d |
|- ( z = ( P gcd N ) -> ( ( z = 1 \/ z = P ) <-> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) |
26 |
22 25
|
imbi12d |
|- ( z = ( P gcd N ) -> ( ( z || P -> ( z = 1 \/ z = P ) ) <-> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
27 |
26
|
rspcv |
|- ( ( P gcd N ) e. NN -> ( A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) -> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
28 |
21 27
|
syl5com |
|- ( P e. Prime -> ( ( P gcd N ) e. NN -> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
29 |
28
|
adantr |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) e. NN -> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
30 |
18 19 29
|
mp2d |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) |
31 |
|
biorf |
|- ( -. ( P gcd N ) = P -> ( ( P gcd N ) = 1 <-> ( ( P gcd N ) = P \/ ( P gcd N ) = 1 ) ) ) |
32 |
|
orcom |
|- ( ( ( P gcd N ) = P \/ ( P gcd N ) = 1 ) <-> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) |
33 |
31 32
|
bitrdi |
|- ( -. ( P gcd N ) = P -> ( ( P gcd N ) = 1 <-> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) |
34 |
30 33
|
syl5ibrcom |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. ( P gcd N ) = P -> ( P gcd N ) = 1 ) ) |
35 |
7 34
|
syld |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N -> ( P gcd N ) = 1 ) ) |
36 |
|
iddvds |
|- ( P e. ZZ -> P || P ) |
37 |
1 36
|
syl |
|- ( P e. Prime -> P || P ) |
38 |
37
|
adantr |
|- ( ( P e. Prime /\ N e. ZZ ) -> P || P ) |
39 |
|
dvdslegcd |
|- ( ( ( P e. ZZ /\ P e. ZZ /\ N e. ZZ ) /\ -. ( P = 0 /\ N = 0 ) ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) |
40 |
39
|
ex |
|- ( ( P e. ZZ /\ P e. ZZ /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) ) |
41 |
40
|
3anidm12 |
|- ( ( P e. ZZ /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) ) |
42 |
1 41
|
sylan |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) ) |
43 |
14 42
|
mpd |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) |
44 |
38 43
|
mpand |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P || N -> P <_ ( P gcd N ) ) ) |
45 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
46 |
45
|
adantr |
|- ( ( P e. Prime /\ N e. ZZ ) -> 1 < P ) |
47 |
|
1re |
|- 1 e. RR |
48 |
1
|
zred |
|- ( P e. Prime -> P e. RR ) |
49 |
18
|
nnred |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) e. RR ) |
50 |
|
ltletr |
|- ( ( 1 e. RR /\ P e. RR /\ ( P gcd N ) e. RR ) -> ( ( 1 < P /\ P <_ ( P gcd N ) ) -> 1 < ( P gcd N ) ) ) |
51 |
47 48 49 50
|
mp3an2ani |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( ( 1 < P /\ P <_ ( P gcd N ) ) -> 1 < ( P gcd N ) ) ) |
52 |
46 51
|
mpand |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P <_ ( P gcd N ) -> 1 < ( P gcd N ) ) ) |
53 |
|
ltne |
|- ( ( 1 e. RR /\ 1 < ( P gcd N ) ) -> ( P gcd N ) =/= 1 ) |
54 |
47 53
|
mpan |
|- ( 1 < ( P gcd N ) -> ( P gcd N ) =/= 1 ) |
55 |
54
|
a1i |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( 1 < ( P gcd N ) -> ( P gcd N ) =/= 1 ) ) |
56 |
44 52 55
|
3syld |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P || N -> ( P gcd N ) =/= 1 ) ) |
57 |
56
|
necon2bd |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) = 1 -> -. P || N ) ) |
58 |
35 57
|
impbid |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N <-> ( P gcd N ) = 1 ) ) |