Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
2 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
3 |
|
mulcom |
|- ( ( M e. CC /\ N e. CC ) -> ( M x. N ) = ( N x. M ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) = ( N x. M ) ) |
5 |
4
|
breq2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. M ) ) ) |
6 |
|
dvdsmulgcd |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( K || ( N x. M ) <-> K || ( N x. ( M gcd K ) ) ) ) |
7 |
6
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( N x. M ) <-> K || ( N x. ( M gcd K ) ) ) ) |
8 |
5 7
|
bitrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
9 |
8
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
10 |
9
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
11 |
|
gcdcom |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K gcd M ) = ( M gcd K ) ) |
12 |
11
|
3adant3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd M ) = ( M gcd K ) ) |
13 |
12
|
eqeq1d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 <-> ( M gcd K ) = 1 ) ) |
14 |
|
oveq2 |
|- ( ( M gcd K ) = 1 -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) |
15 |
13 14
|
syl6bi |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) ) |
16 |
15
|
imp |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) |
17 |
2
|
mulid1d |
|- ( N e. ZZ -> ( N x. 1 ) = N ) |
18 |
17
|
3ad2ant3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N x. 1 ) = N ) |
19 |
18
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. 1 ) = N ) |
20 |
16 19
|
eqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. ( M gcd K ) ) = N ) |
21 |
20
|
breq2d |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( N x. ( M gcd K ) ) <-> K || N ) ) |
22 |
10 21
|
bitrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) <-> K || N ) ) |
23 |
22
|
biimpd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) -> K || N ) ) |
24 |
23
|
ex |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 -> ( K || ( M x. N ) -> K || N ) ) ) |
25 |
24
|
impcomd |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M x. N ) /\ ( K gcd M ) = 1 ) -> K || N ) ) |