| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 2 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 3 |
|
mulcom |
|- ( ( M e. CC /\ N e. CC ) -> ( M x. N ) = ( N x. M ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) = ( N x. M ) ) |
| 5 |
4
|
breq2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. M ) ) ) |
| 6 |
|
dvdsmulgcd |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( K || ( N x. M ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 7 |
6
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( N x. M ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 8 |
5 7
|
bitrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 9 |
8
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 10 |
9
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) <-> K || ( N x. ( M gcd K ) ) ) ) |
| 11 |
|
gcdcom |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K gcd M ) = ( M gcd K ) ) |
| 12 |
11
|
3adant3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd M ) = ( M gcd K ) ) |
| 13 |
12
|
eqeq1d |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 <-> ( M gcd K ) = 1 ) ) |
| 14 |
|
oveq2 |
|- ( ( M gcd K ) = 1 -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) |
| 15 |
13 14
|
biimtrdi |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) ) |
| 16 |
15
|
imp |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. ( M gcd K ) ) = ( N x. 1 ) ) |
| 17 |
2
|
mulridd |
|- ( N e. ZZ -> ( N x. 1 ) = N ) |
| 18 |
17
|
3ad2ant3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N x. 1 ) = N ) |
| 19 |
18
|
adantr |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. 1 ) = N ) |
| 20 |
16 19
|
eqtrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( N x. ( M gcd K ) ) = N ) |
| 21 |
20
|
breq2d |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( N x. ( M gcd K ) ) <-> K || N ) ) |
| 22 |
10 21
|
bitrd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) <-> K || N ) ) |
| 23 |
22
|
biimpd |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( K || ( M x. N ) -> K || N ) ) |
| 24 |
23
|
ex |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) = 1 -> ( K || ( M x. N ) -> K || N ) ) ) |
| 25 |
24
|
impcomd |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M x. N ) /\ ( K gcd M ) = 1 ) -> K || N ) ) |