Step |
Hyp |
Ref |
Expression |
1 |
|
coprmgcdb |
|- ( ( F e. NN /\ G e. NN ) -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) <-> ( F gcd G ) = 1 ) ) |
2 |
|
breq1 |
|- ( i = I -> ( i || F <-> I || F ) ) |
3 |
|
breq1 |
|- ( i = I -> ( i || G <-> I || G ) ) |
4 |
2 3
|
anbi12d |
|- ( i = I -> ( ( i || F /\ i || G ) <-> ( I || F /\ I || G ) ) ) |
5 |
|
eqeq1 |
|- ( i = I -> ( i = 1 <-> I = 1 ) ) |
6 |
4 5
|
imbi12d |
|- ( i = I -> ( ( ( i || F /\ i || G ) -> i = 1 ) <-> ( ( I || F /\ I || G ) -> I = 1 ) ) ) |
7 |
6
|
rspcv |
|- ( I e. NN -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> ( ( I || F /\ I || G ) -> I = 1 ) ) ) |
8 |
7
|
com23 |
|- ( I e. NN -> ( ( I || F /\ I || G ) -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> I = 1 ) ) ) |
9 |
8
|
3impib |
|- ( ( I e. NN /\ I || F /\ I || G ) -> ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> I = 1 ) ) |
10 |
9
|
com12 |
|- ( A. i e. NN ( ( i || F /\ i || G ) -> i = 1 ) -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) |
11 |
1 10
|
syl6bir |
|- ( ( F e. NN /\ G e. NN ) -> ( ( F gcd G ) = 1 -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) ) |
12 |
11
|
3impia |
|- ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) |