| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 2 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 3 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 5 |
|
simpr |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 6 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
| 7 |
6
|
adantr |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( A gcd B ) e. NN ) |
| 8 |
|
breq1 |
|- ( i = ( A gcd B ) -> ( i || A <-> ( A gcd B ) || A ) ) |
| 9 |
|
breq1 |
|- ( i = ( A gcd B ) -> ( i || B <-> ( A gcd B ) || B ) ) |
| 10 |
8 9
|
anbi12d |
|- ( i = ( A gcd B ) -> ( ( i || A /\ i || B ) <-> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) ) |
| 11 |
|
eqeq1 |
|- ( i = ( A gcd B ) -> ( i = 1 <-> ( A gcd B ) = 1 ) ) |
| 12 |
10 11
|
imbi12d |
|- ( i = ( A gcd B ) -> ( ( ( i || A /\ i || B ) -> i = 1 ) <-> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( A gcd B ) = 1 ) ) ) |
| 13 |
12
|
rspcv |
|- ( ( A gcd B ) e. NN -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( A gcd B ) = 1 ) ) ) |
| 14 |
7 13
|
syl |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> ( A gcd B ) = 1 ) ) ) |
| 15 |
5 14
|
mpid |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( A gcd B ) = 1 ) ) |
| 16 |
4 15
|
mpdan |
|- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> ( A gcd B ) = 1 ) ) |
| 17 |
|
simpl |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( A e. NN /\ B e. NN ) ) |
| 18 |
17
|
anim1ci |
|- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( i e. NN /\ ( A e. NN /\ B e. NN ) ) ) |
| 19 |
|
3anass |
|- ( ( i e. NN /\ A e. NN /\ B e. NN ) <-> ( i e. NN /\ ( A e. NN /\ B e. NN ) ) ) |
| 20 |
18 19
|
sylibr |
|- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( i e. NN /\ A e. NN /\ B e. NN ) ) |
| 21 |
|
nndvdslegcd |
|- ( ( i e. NN /\ A e. NN /\ B e. NN ) -> ( ( i || A /\ i || B ) -> i <_ ( A gcd B ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( ( i || A /\ i || B ) -> i <_ ( A gcd B ) ) ) |
| 23 |
|
breq2 |
|- ( ( A gcd B ) = 1 -> ( i <_ ( A gcd B ) <-> i <_ 1 ) ) |
| 24 |
23
|
adantr |
|- ( ( ( A gcd B ) = 1 /\ i e. NN ) -> ( i <_ ( A gcd B ) <-> i <_ 1 ) ) |
| 25 |
|
nnge1 |
|- ( i e. NN -> 1 <_ i ) |
| 26 |
|
nnre |
|- ( i e. NN -> i e. RR ) |
| 27 |
|
1red |
|- ( i e. NN -> 1 e. RR ) |
| 28 |
26 27
|
letri3d |
|- ( i e. NN -> ( i = 1 <-> ( i <_ 1 /\ 1 <_ i ) ) ) |
| 29 |
28
|
biimprd |
|- ( i e. NN -> ( ( i <_ 1 /\ 1 <_ i ) -> i = 1 ) ) |
| 30 |
25 29
|
mpan2d |
|- ( i e. NN -> ( i <_ 1 -> i = 1 ) ) |
| 31 |
30
|
adantl |
|- ( ( ( A gcd B ) = 1 /\ i e. NN ) -> ( i <_ 1 -> i = 1 ) ) |
| 32 |
24 31
|
sylbid |
|- ( ( ( A gcd B ) = 1 /\ i e. NN ) -> ( i <_ ( A gcd B ) -> i = 1 ) ) |
| 33 |
32
|
adantll |
|- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( i <_ ( A gcd B ) -> i = 1 ) ) |
| 34 |
22 33
|
syld |
|- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ i e. NN ) -> ( ( i || A /\ i || B ) -> i = 1 ) ) |
| 35 |
34
|
ralrimiva |
|- ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) |
| 36 |
35
|
ex |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) = 1 -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) ) |
| 37 |
16 36
|
impbid |
|- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |