Metamath Proof Explorer


Theorem copsex2dv

Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses copsex2dv.a
|- ( ph -> A e. U )
copsex2dv.b
|- ( ph -> B e. V )
copsex2dv.1
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
Assertion copsex2dv
|- ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) )

Proof

Step Hyp Ref Expression
1 copsex2dv.a
 |-  ( ph -> A e. U )
2 copsex2dv.b
 |-  ( ph -> B e. V )
3 copsex2dv.1
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) )
4 3 ex
 |-  ( ph -> ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) )
5 4 alrimivv
 |-  ( ph -> A. x A. y ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) )
6 copsex2t
 |-  ( ( A. x A. y ( ( x = A /\ y = B ) -> ( ps <-> ch ) ) /\ ( A e. U /\ B e. V ) ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) )
7 5 1 2 6 syl12anc
 |-  ( ph -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ps ) <-> ch ) )