Step |
Hyp |
Ref |
Expression |
1 |
|
copsex2g.1 |
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
2 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
3 |
|
elisset |
|- ( B e. W -> E. y y = B ) |
4 |
|
exdistrv |
|- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
5 |
|
nfe1 |
|- F/ x E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) |
6 |
|
nfv |
|- F/ x ps |
7 |
5 6
|
nfbi |
|- F/ x ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) |
8 |
|
nfe1 |
|- F/ y E. y ( <. A , B >. = <. x , y >. /\ ph ) |
9 |
8
|
nfex |
|- F/ y E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) |
10 |
|
nfv |
|- F/ y ps |
11 |
9 10
|
nfbi |
|- F/ y ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) |
12 |
|
opeq12 |
|- ( ( x = A /\ y = B ) -> <. x , y >. = <. A , B >. ) |
13 |
|
copsexgw |
|- ( <. A , B >. = <. x , y >. -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) ) |
14 |
13
|
eqcoms |
|- ( <. x , y >. = <. A , B >. -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) ) |
15 |
12 14
|
syl |
|- ( ( x = A /\ y = B ) -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) ) |
16 |
15 1
|
bitr3d |
|- ( ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |
17 |
11 16
|
exlimi |
|- ( E. y ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |
18 |
7 17
|
exlimi |
|- ( E. x E. y ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |
19 |
4 18
|
sylbir |
|- ( ( E. x x = A /\ E. y y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |
20 |
2 3 19
|
syl2an |
|- ( ( A e. V /\ B e. W ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |