Metamath Proof Explorer


Theorem copsex2ga

Description: Implicit substitution inference for ordered pairs. Compare copsex2g . (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis copsex2ga.1
|- ( A = <. x , y >. -> ( ph <-> ps ) )
Assertion copsex2ga
|- ( A e. ( V X. W ) -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 copsex2ga.1
 |-  ( A = <. x , y >. -> ( ph <-> ps ) )
2 xpss
 |-  ( V X. W ) C_ ( _V X. _V )
3 2 sseli
 |-  ( A e. ( V X. W ) -> A e. ( _V X. _V ) )
4 1 copsex2gb
 |-  ( E. x E. y ( A = <. x , y >. /\ ps ) <-> ( A e. ( _V X. _V ) /\ ph ) )
5 4 baibr
 |-  ( A e. ( _V X. _V ) -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ps ) ) )
6 3 5 syl
 |-  ( A e. ( V X. W ) -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ps ) ) )