Step |
Hyp |
Ref |
Expression |
1 |
|
copsex2ga.1 |
|- ( A = <. x , y >. -> ( ph <-> ps ) ) |
2 |
|
elvv |
|- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
3 |
2
|
anbi1i |
|- ( ( A e. ( _V X. _V ) /\ ph ) <-> ( E. x E. y A = <. x , y >. /\ ph ) ) |
4 |
|
19.41vv |
|- ( E. x E. y ( A = <. x , y >. /\ ph ) <-> ( E. x E. y A = <. x , y >. /\ ph ) ) |
5 |
1
|
pm5.32i |
|- ( ( A = <. x , y >. /\ ph ) <-> ( A = <. x , y >. /\ ps ) ) |
6 |
5
|
2exbii |
|- ( E. x E. y ( A = <. x , y >. /\ ph ) <-> E. x E. y ( A = <. x , y >. /\ ps ) ) |
7 |
3 4 6
|
3bitr2ri |
|- ( E. x E. y ( A = <. x , y >. /\ ps ) <-> ( A e. ( _V X. _V ) /\ ph ) ) |