Step |
Hyp |
Ref |
Expression |
1 |
|
copsex4g.1 |
|- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ( ph <-> ps ) ) |
2 |
|
eqcom |
|- ( <. A , B >. = <. x , y >. <-> <. x , y >. = <. A , B >. ) |
3 |
|
vex |
|- x e. _V |
4 |
|
vex |
|- y e. _V |
5 |
3 4
|
opth |
|- ( <. x , y >. = <. A , B >. <-> ( x = A /\ y = B ) ) |
6 |
2 5
|
bitri |
|- ( <. A , B >. = <. x , y >. <-> ( x = A /\ y = B ) ) |
7 |
|
eqcom |
|- ( <. C , D >. = <. z , w >. <-> <. z , w >. = <. C , D >. ) |
8 |
|
vex |
|- z e. _V |
9 |
|
vex |
|- w e. _V |
10 |
8 9
|
opth |
|- ( <. z , w >. = <. C , D >. <-> ( z = C /\ w = D ) ) |
11 |
7 10
|
bitri |
|- ( <. C , D >. = <. z , w >. <-> ( z = C /\ w = D ) ) |
12 |
6 11
|
anbi12i |
|- ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) <-> ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
13 |
12
|
anbi1i |
|- ( ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) ) |
14 |
13
|
a1i |
|- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) ) ) |
15 |
14
|
4exbidv |
|- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> E. x E. y E. z E. w ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) ) ) |
16 |
|
id |
|- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
17 |
16 1
|
cgsex4g |
|- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) <-> ps ) ) |
18 |
15 17
|
bitrd |
|- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> ps ) ) |