| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- z e. _V |
| 2 |
|
vex |
|- y e. _V |
| 3 |
1 2
|
brelrn |
|- ( z B y -> y e. ran B ) |
| 4 |
|
ssel |
|- ( ran B C_ C -> ( y e. ran B -> y e. C ) ) |
| 5 |
|
vex |
|- x e. _V |
| 6 |
5
|
brresi |
|- ( y ( A |` C ) x <-> ( y e. C /\ y A x ) ) |
| 7 |
6
|
baib |
|- ( y e. C -> ( y ( A |` C ) x <-> y A x ) ) |
| 8 |
3 4 7
|
syl56 |
|- ( ran B C_ C -> ( z B y -> ( y ( A |` C ) x <-> y A x ) ) ) |
| 9 |
8
|
pm5.32d |
|- ( ran B C_ C -> ( ( z B y /\ y ( A |` C ) x ) <-> ( z B y /\ y A x ) ) ) |
| 10 |
9
|
exbidv |
|- ( ran B C_ C -> ( E. y ( z B y /\ y ( A |` C ) x ) <-> E. y ( z B y /\ y A x ) ) ) |
| 11 |
10
|
opabbidv |
|- ( ran B C_ C -> { <. z , x >. | E. y ( z B y /\ y ( A |` C ) x ) } = { <. z , x >. | E. y ( z B y /\ y A x ) } ) |
| 12 |
|
df-co |
|- ( ( A |` C ) o. B ) = { <. z , x >. | E. y ( z B y /\ y ( A |` C ) x ) } |
| 13 |
|
df-co |
|- ( A o. B ) = { <. z , x >. | E. y ( z B y /\ y A x ) } |
| 14 |
11 12 13
|
3eqtr4g |
|- ( ran B C_ C -> ( ( A |` C ) o. B ) = ( A o. B ) ) |