| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfdm4 |
|- dom A = ran `' A |
| 2 |
1
|
sseq1i |
|- ( dom A C_ C <-> ran `' A C_ C ) |
| 3 |
|
cores |
|- ( ran `' A C_ C -> ( ( `' B |` C ) o. `' A ) = ( `' B o. `' A ) ) |
| 4 |
2 3
|
sylbi |
|- ( dom A C_ C -> ( ( `' B |` C ) o. `' A ) = ( `' B o. `' A ) ) |
| 5 |
|
cnvco |
|- `' ( A o. `' ( `' B |` C ) ) = ( `' `' ( `' B |` C ) o. `' A ) |
| 6 |
|
cocnvcnv1 |
|- ( `' `' ( `' B |` C ) o. `' A ) = ( ( `' B |` C ) o. `' A ) |
| 7 |
5 6
|
eqtri |
|- `' ( A o. `' ( `' B |` C ) ) = ( ( `' B |` C ) o. `' A ) |
| 8 |
|
cnvco |
|- `' ( A o. B ) = ( `' B o. `' A ) |
| 9 |
4 7 8
|
3eqtr4g |
|- ( dom A C_ C -> `' ( A o. `' ( `' B |` C ) ) = `' ( A o. B ) ) |
| 10 |
9
|
cnveqd |
|- ( dom A C_ C -> `' `' ( A o. `' ( `' B |` C ) ) = `' `' ( A o. B ) ) |
| 11 |
|
relco |
|- Rel ( A o. `' ( `' B |` C ) ) |
| 12 |
|
dfrel2 |
|- ( Rel ( A o. `' ( `' B |` C ) ) <-> `' `' ( A o. `' ( `' B |` C ) ) = ( A o. `' ( `' B |` C ) ) ) |
| 13 |
11 12
|
mpbi |
|- `' `' ( A o. `' ( `' B |` C ) ) = ( A o. `' ( `' B |` C ) ) |
| 14 |
|
relco |
|- Rel ( A o. B ) |
| 15 |
|
dfrel2 |
|- ( Rel ( A o. B ) <-> `' `' ( A o. B ) = ( A o. B ) ) |
| 16 |
14 15
|
mpbi |
|- `' `' ( A o. B ) = ( A o. B ) |
| 17 |
10 13 16
|
3eqtr3g |
|- ( dom A C_ C -> ( A o. `' ( `' B |` C ) ) = ( A o. B ) ) |