| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 |  | 0xr |  |-  0 e. RR* | 
						
							| 3 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) | 
						
							| 4 | 2 1 3 | mp2an |  |-  ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) | 
						
							| 5 | 4 | simp1bi |  |-  ( A e. ( 0 (,] 1 ) -> A e. RR ) | 
						
							| 6 | 5 | resqcld |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. RR ) | 
						
							| 7 | 6 | rehalfcld |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) e. RR ) | 
						
							| 8 |  | resubcl |  |-  ( ( 1 e. RR /\ ( ( A ^ 2 ) / 2 ) e. RR ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) | 
						
							| 9 | 1 7 8 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. CC ) | 
						
							| 11 |  | ax-icn |  |-  _i e. CC | 
						
							| 12 | 5 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> A e. CC ) | 
						
							| 13 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 14 | 11 12 13 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( _i x. A ) e. CC ) | 
						
							| 15 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 16 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 17 | 16 | eftlcl |  |-  ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) | 
						
							| 18 | 14 15 17 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) | 
						
							| 19 | 18 | recld |  |-  ( A e. ( 0 (,] 1 ) -> ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) | 
						
							| 20 | 19 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. CC ) | 
						
							| 21 | 16 | recos4p |  |-  ( A e. RR -> ( cos ` A ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) | 
						
							| 22 | 5 21 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( cos ` A ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) | 
						
							| 23 | 10 20 22 | mvrladdd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) = ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) = ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) ) | 
						
							| 25 | 20 | abscld |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) e. RR ) | 
						
							| 26 | 18 | abscld |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) e. RR ) | 
						
							| 27 |  | 6nn |  |-  6 e. NN | 
						
							| 28 |  | nndivre |  |-  ( ( ( A ^ 2 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 2 ) / 6 ) e. RR ) | 
						
							| 29 | 6 27 28 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) e. RR ) | 
						
							| 30 |  | absrele |  |-  ( sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) e. CC -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 31 | 18 30 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) <_ ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) | 
						
							| 32 |  | reexpcl |  |-  ( ( A e. RR /\ 4 e. NN0 ) -> ( A ^ 4 ) e. RR ) | 
						
							| 33 | 5 15 32 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) e. RR ) | 
						
							| 34 |  | nndivre |  |-  ( ( ( A ^ 4 ) e. RR /\ 6 e. NN ) -> ( ( A ^ 4 ) / 6 ) e. RR ) | 
						
							| 35 | 33 27 34 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) e. RR ) | 
						
							| 36 | 16 | ef01bndlem |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 4 ) / 6 ) ) | 
						
							| 37 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 38 | 37 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 2 e. NN0 ) | 
						
							| 39 |  | 4z |  |-  4 e. ZZ | 
						
							| 40 |  | 2re |  |-  2 e. RR | 
						
							| 41 |  | 4re |  |-  4 e. RR | 
						
							| 42 |  | 2lt4 |  |-  2 < 4 | 
						
							| 43 | 40 41 42 | ltleii |  |-  2 <_ 4 | 
						
							| 44 |  | 2z |  |-  2 e. ZZ | 
						
							| 45 | 44 | eluz1i |  |-  ( 4 e. ( ZZ>= ` 2 ) <-> ( 4 e. ZZ /\ 2 <_ 4 ) ) | 
						
							| 46 | 39 43 45 | mpbir2an |  |-  4 e. ( ZZ>= ` 2 ) | 
						
							| 47 | 46 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 4 e. ( ZZ>= ` 2 ) ) | 
						
							| 48 | 4 | simp2bi |  |-  ( A e. ( 0 (,] 1 ) -> 0 < A ) | 
						
							| 49 |  | 0re |  |-  0 e. RR | 
						
							| 50 |  | ltle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 51 | 49 5 50 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 52 | 48 51 | mpd |  |-  ( A e. ( 0 (,] 1 ) -> 0 <_ A ) | 
						
							| 53 | 4 | simp3bi |  |-  ( A e. ( 0 (,] 1 ) -> A <_ 1 ) | 
						
							| 54 | 5 38 47 52 53 | leexp2rd |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 4 ) <_ ( A ^ 2 ) ) | 
						
							| 55 |  | 6re |  |-  6 e. RR | 
						
							| 56 | 55 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 6 e. RR ) | 
						
							| 57 |  | 6pos |  |-  0 < 6 | 
						
							| 58 | 57 | a1i |  |-  ( A e. ( 0 (,] 1 ) -> 0 < 6 ) | 
						
							| 59 |  | lediv1 |  |-  ( ( ( A ^ 4 ) e. RR /\ ( A ^ 2 ) e. RR /\ ( 6 e. RR /\ 0 < 6 ) ) -> ( ( A ^ 4 ) <_ ( A ^ 2 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) ) | 
						
							| 60 | 33 6 56 58 59 | syl112anc |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) <_ ( A ^ 2 ) <-> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) ) | 
						
							| 61 | 54 60 | mpbid |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 4 ) / 6 ) <_ ( ( A ^ 2 ) / 6 ) ) | 
						
							| 62 | 26 35 29 36 61 | ltletrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) < ( ( A ^ 2 ) / 6 ) ) | 
						
							| 63 | 25 26 29 31 62 | lelttrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( Re ` sum_ k e. ( ZZ>= ` 4 ) ( ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) ) < ( ( A ^ 2 ) / 6 ) ) | 
						
							| 64 | 24 63 | eqbrtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) ) | 
						
							| 65 | 5 | recoscld |  |-  ( A e. ( 0 (,] 1 ) -> ( cos ` A ) e. RR ) | 
						
							| 66 | 65 9 29 | absdifltd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) <-> ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) /\ ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) ) ) | 
						
							| 67 |  | 1cnd |  |-  ( A e. ( 0 (,] 1 ) -> 1 e. CC ) | 
						
							| 68 | 7 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) e. CC ) | 
						
							| 69 | 29 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) e. CC ) | 
						
							| 70 | 67 68 69 | subsub4d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) ) ) | 
						
							| 71 |  | halfpm6th |  |-  ( ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) /\ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) | 
						
							| 72 | 71 | simpri |  |-  ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) | 
						
							| 73 | 72 | oveq2i |  |-  ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) | 
						
							| 74 | 6 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. CC ) | 
						
							| 75 |  | 2cn |  |-  2 e. CC | 
						
							| 76 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 77 | 75 76 | reccli |  |-  ( 1 / 2 ) e. CC | 
						
							| 78 |  | 6cn |  |-  6 e. CC | 
						
							| 79 | 27 | nnne0i |  |-  6 =/= 0 | 
						
							| 80 | 78 79 | reccli |  |-  ( 1 / 6 ) e. CC | 
						
							| 81 |  | adddi |  |-  ( ( ( A ^ 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 82 | 77 80 81 | mp3an23 |  |-  ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 83 | 74 82 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) + ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 84 | 73 83 | eqtr3id |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 85 |  | 3cn |  |-  3 e. CC | 
						
							| 86 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 87 | 85 86 | pm3.2i |  |-  ( 3 e. CC /\ 3 =/= 0 ) | 
						
							| 88 |  | div12 |  |-  ( ( 2 e. CC /\ ( A ^ 2 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) | 
						
							| 89 | 75 87 88 | mp3an13 |  |-  ( ( A ^ 2 ) e. CC -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) | 
						
							| 90 | 74 89 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) | 
						
							| 91 |  | divrec |  |-  ( ( ( A ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) | 
						
							| 92 | 75 76 91 | mp3an23 |  |-  ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) | 
						
							| 93 | 74 92 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 2 ) = ( ( A ^ 2 ) x. ( 1 / 2 ) ) ) | 
						
							| 94 |  | divrec |  |-  ( ( ( A ^ 2 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) | 
						
							| 95 | 78 79 94 | mp3an23 |  |-  ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) | 
						
							| 96 | 74 95 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 6 ) = ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) | 
						
							| 97 | 93 96 | oveq12d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) + ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 98 | 84 90 97 | 3eqtr4rd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) = ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) | 
						
							| 99 | 98 | oveq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) + ( ( A ^ 2 ) / 6 ) ) ) = ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) | 
						
							| 100 | 70 99 | eqtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) | 
						
							| 101 | 100 | breq1d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) <-> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) ) | 
						
							| 102 | 67 68 69 | subsubd |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) | 
						
							| 103 | 71 | simpli |  |-  ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) | 
						
							| 104 | 103 | oveq2i |  |-  ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) | 
						
							| 105 |  | subdi |  |-  ( ( ( A ^ 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 106 | 77 80 105 | mp3an23 |  |-  ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 107 | 74 106 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( ( 1 / 2 ) - ( 1 / 6 ) ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 108 | 104 107 | eqtr3id |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 1 / 3 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 109 |  | divrec |  |-  ( ( ( A ^ 2 ) e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) | 
						
							| 110 | 85 86 109 | mp3an23 |  |-  ( ( A ^ 2 ) e. CC -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) | 
						
							| 111 | 74 110 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 3 ) = ( ( A ^ 2 ) x. ( 1 / 3 ) ) ) | 
						
							| 112 | 93 96 | oveq12d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) = ( ( ( A ^ 2 ) x. ( 1 / 2 ) ) - ( ( A ^ 2 ) x. ( 1 / 6 ) ) ) ) | 
						
							| 113 | 108 111 112 | 3eqtr4rd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) = ( ( A ^ 2 ) / 3 ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 - ( ( ( A ^ 2 ) / 2 ) - ( ( A ^ 2 ) / 6 ) ) ) = ( 1 - ( ( A ^ 2 ) / 3 ) ) ) | 
						
							| 115 | 102 114 | eqtr3d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) = ( 1 - ( ( A ^ 2 ) / 3 ) ) ) | 
						
							| 116 | 115 | breq2d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) <-> ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) | 
						
							| 117 | 101 116 | anbi12d |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) - ( ( A ^ 2 ) / 6 ) ) < ( cos ` A ) /\ ( cos ` A ) < ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 2 ) / 6 ) ) ) <-> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) ) | 
						
							| 118 | 66 117 | bitrd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( abs ` ( ( cos ` A ) - ( 1 - ( ( A ^ 2 ) / 2 ) ) ) ) < ( ( A ^ 2 ) / 6 ) <-> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) ) | 
						
							| 119 | 64 118 | mpbid |  |-  ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |