| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr |  |-  0 e. RR* | 
						
							| 2 |  | 1re |  |-  1 e. RR | 
						
							| 3 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an |  |-  ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) | 
						
							| 5 | 4 | simp1bi |  |-  ( A e. ( 0 (,] 1 ) -> A e. RR ) | 
						
							| 6 | 5 | resqcld |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. CC ) | 
						
							| 8 |  | 2cn |  |-  2 e. CC | 
						
							| 9 |  | 3cn |  |-  3 e. CC | 
						
							| 10 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 11 | 9 10 | pm3.2i |  |-  ( 3 e. CC /\ 3 =/= 0 ) | 
						
							| 12 |  | div12 |  |-  ( ( 2 e. CC /\ ( A ^ 2 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) | 
						
							| 13 | 8 11 12 | mp3an13 |  |-  ( ( A ^ 2 ) e. CC -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) | 
						
							| 14 | 7 13 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) | 
						
							| 15 |  | 2z |  |-  2 e. ZZ | 
						
							| 16 |  | expgt0 |  |-  ( ( A e. RR /\ 2 e. ZZ /\ 0 < A ) -> 0 < ( A ^ 2 ) ) | 
						
							| 17 | 15 16 | mp3an2 |  |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( A ^ 2 ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> 0 < ( A ^ 2 ) ) | 
						
							| 19 | 4 18 | sylbi |  |-  ( A e. ( 0 (,] 1 ) -> 0 < ( A ^ 2 ) ) | 
						
							| 20 |  | 2lt3 |  |-  2 < 3 | 
						
							| 21 |  | 2re |  |-  2 e. RR | 
						
							| 22 |  | 3re |  |-  3 e. RR | 
						
							| 23 |  | 3pos |  |-  0 < 3 | 
						
							| 24 | 21 22 22 23 | ltdiv1ii |  |-  ( 2 < 3 <-> ( 2 / 3 ) < ( 3 / 3 ) ) | 
						
							| 25 | 20 24 | mpbi |  |-  ( 2 / 3 ) < ( 3 / 3 ) | 
						
							| 26 | 9 10 | dividi |  |-  ( 3 / 3 ) = 1 | 
						
							| 27 | 25 26 | breqtri |  |-  ( 2 / 3 ) < 1 | 
						
							| 28 | 21 22 10 | redivcli |  |-  ( 2 / 3 ) e. RR | 
						
							| 29 |  | ltmul2 |  |-  ( ( ( 2 / 3 ) e. RR /\ 1 e. RR /\ ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) | 
						
							| 30 | 28 2 29 | mp3an12 |  |-  ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) | 
						
							| 31 | 27 30 | mpbii |  |-  ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) | 
						
							| 32 | 6 19 31 | syl2anc |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) | 
						
							| 33 | 7 | mulridd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. 1 ) = ( A ^ 2 ) ) | 
						
							| 34 | 32 33 | breqtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( A ^ 2 ) ) | 
						
							| 35 | 14 34 | eqbrtrd |  |-  ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) ) | 
						
							| 36 |  | 0re |  |-  0 e. RR | 
						
							| 37 |  | ltle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 38 | 36 37 | mpan |  |-  ( A e. RR -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 39 | 38 | imdistani |  |-  ( ( A e. RR /\ 0 < A ) -> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 40 |  | le2sq2 |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( 1 e. RR /\ A <_ 1 ) ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) | 
						
							| 41 | 2 40 | mpanr1 |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) | 
						
							| 42 | 39 41 | stoic3 |  |-  ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) | 
						
							| 43 | 4 42 | sylbi |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) | 
						
							| 44 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 45 | 43 44 | breqtrdi |  |-  ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ 1 ) | 
						
							| 46 |  | redivcl |  |-  ( ( ( A ^ 2 ) e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) | 
						
							| 47 | 22 10 46 | mp3an23 |  |-  ( ( A ^ 2 ) e. RR -> ( ( A ^ 2 ) / 3 ) e. RR ) | 
						
							| 48 | 6 47 | syl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) | 
						
							| 49 |  | remulcl |  |-  ( ( 2 e. RR /\ ( ( A ^ 2 ) / 3 ) e. RR ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) | 
						
							| 50 | 21 48 49 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) | 
						
							| 51 |  | ltletr |  |-  ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR /\ 1 e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) | 
						
							| 52 | 2 51 | mp3an3 |  |-  ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) | 
						
							| 53 | 50 6 52 | syl2anc |  |-  ( A e. ( 0 (,] 1 ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) | 
						
							| 54 | 35 45 53 | mp2and |  |-  ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) | 
						
							| 55 |  | posdif |  |-  ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ 1 e. RR ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) | 
						
							| 56 | 50 2 55 | sylancl |  |-  ( A e. ( 0 (,] 1 ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) | 
						
							| 57 | 54 56 | mpbid |  |-  ( A e. ( 0 (,] 1 ) -> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) | 
						
							| 58 |  | cos01bnd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) | 
						
							| 59 | 58 | simpld |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) | 
						
							| 60 |  | resubcl |  |-  ( ( 1 e. RR /\ ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) | 
						
							| 61 | 2 50 60 | sylancr |  |-  ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) | 
						
							| 62 | 5 | recoscld |  |-  ( A e. ( 0 (,] 1 ) -> ( cos ` A ) e. RR ) | 
						
							| 63 |  | lttr |  |-  ( ( 0 e. RR /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) | 
						
							| 64 | 36 61 62 63 | mp3an2i |  |-  ( A e. ( 0 (,] 1 ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) | 
						
							| 65 | 57 59 64 | mp2and |  |-  ( A e. ( 0 (,] 1 ) -> 0 < ( cos ` A ) ) |