Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
|
1re |
|- 1 e. RR |
3 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
4 |
1 2 3
|
mp2an |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
5 |
4
|
simp1bi |
|- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
6 |
5
|
resqcld |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. RR ) |
7 |
6
|
recnd |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) e. CC ) |
8 |
|
2cn |
|- 2 e. CC |
9 |
|
3cn |
|- 3 e. CC |
10 |
|
3ne0 |
|- 3 =/= 0 |
11 |
9 10
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
12 |
|
div12 |
|- ( ( 2 e. CC /\ ( A ^ 2 ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
13 |
8 11 12
|
mp3an13 |
|- ( ( A ^ 2 ) e. CC -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
14 |
7 13
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) = ( ( A ^ 2 ) x. ( 2 / 3 ) ) ) |
15 |
|
2z |
|- 2 e. ZZ |
16 |
|
expgt0 |
|- ( ( A e. RR /\ 2 e. ZZ /\ 0 < A ) -> 0 < ( A ^ 2 ) ) |
17 |
15 16
|
mp3an2 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( A ^ 2 ) ) |
18 |
17
|
3adant3 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> 0 < ( A ^ 2 ) ) |
19 |
4 18
|
sylbi |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( A ^ 2 ) ) |
20 |
|
2lt3 |
|- 2 < 3 |
21 |
|
2re |
|- 2 e. RR |
22 |
|
3re |
|- 3 e. RR |
23 |
|
3pos |
|- 0 < 3 |
24 |
21 22 22 23
|
ltdiv1ii |
|- ( 2 < 3 <-> ( 2 / 3 ) < ( 3 / 3 ) ) |
25 |
20 24
|
mpbi |
|- ( 2 / 3 ) < ( 3 / 3 ) |
26 |
9 10
|
dividi |
|- ( 3 / 3 ) = 1 |
27 |
25 26
|
breqtri |
|- ( 2 / 3 ) < 1 |
28 |
21 22 10
|
redivcli |
|- ( 2 / 3 ) e. RR |
29 |
|
ltmul2 |
|- ( ( ( 2 / 3 ) e. RR /\ 1 e. RR /\ ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) |
30 |
28 2 29
|
mp3an12 |
|- ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( 2 / 3 ) < 1 <-> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) ) |
31 |
27 30
|
mpbii |
|- ( ( ( A ^ 2 ) e. RR /\ 0 < ( A ^ 2 ) ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) |
32 |
6 19 31
|
syl2anc |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( ( A ^ 2 ) x. 1 ) ) |
33 |
7
|
mulid1d |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. 1 ) = ( A ^ 2 ) ) |
34 |
32 33
|
breqtrd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) x. ( 2 / 3 ) ) < ( A ^ 2 ) ) |
35 |
14 34
|
eqbrtrd |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) ) |
36 |
|
0re |
|- 0 e. RR |
37 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
38 |
36 37
|
mpan |
|- ( A e. RR -> ( 0 < A -> 0 <_ A ) ) |
39 |
38
|
imdistani |
|- ( ( A e. RR /\ 0 < A ) -> ( A e. RR /\ 0 <_ A ) ) |
40 |
|
le2sq2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( 1 e. RR /\ A <_ 1 ) ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
41 |
2 40
|
mpanr1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
42 |
39 41
|
stoic3 |
|- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
43 |
4 42
|
sylbi |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ ( 1 ^ 2 ) ) |
44 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
45 |
43 44
|
breqtrdi |
|- ( A e. ( 0 (,] 1 ) -> ( A ^ 2 ) <_ 1 ) |
46 |
|
redivcl |
|- ( ( ( A ^ 2 ) e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) |
47 |
22 10 46
|
mp3an23 |
|- ( ( A ^ 2 ) e. RR -> ( ( A ^ 2 ) / 3 ) e. RR ) |
48 |
6 47
|
syl |
|- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 2 ) / 3 ) e. RR ) |
49 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( A ^ 2 ) / 3 ) e. RR ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) |
50 |
21 48 49
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) |
51 |
|
ltletr |
|- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR /\ 1 e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
52 |
2 51
|
mp3an3 |
|- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ ( A ^ 2 ) e. RR ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
53 |
50 6 52
|
syl2anc |
|- ( A e. ( 0 (,] 1 ) -> ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < ( A ^ 2 ) /\ ( A ^ 2 ) <_ 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) ) |
54 |
35 45 53
|
mp2and |
|- ( A e. ( 0 (,] 1 ) -> ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 ) |
55 |
|
posdif |
|- ( ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR /\ 1 e. RR ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) |
56 |
50 2 55
|
sylancl |
|- ( A e. ( 0 (,] 1 ) -> ( ( 2 x. ( ( A ^ 2 ) / 3 ) ) < 1 <-> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) ) |
57 |
54 56
|
mpbid |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) ) |
58 |
|
cos01bnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) /\ ( cos ` A ) < ( 1 - ( ( A ^ 2 ) / 3 ) ) ) ) |
59 |
58
|
simpld |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) |
60 |
|
resubcl |
|- ( ( 1 e. RR /\ ( 2 x. ( ( A ^ 2 ) / 3 ) ) e. RR ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) |
61 |
2 50 60
|
sylancr |
|- ( A e. ( 0 (,] 1 ) -> ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR ) |
62 |
5
|
recoscld |
|- ( A e. ( 0 (,] 1 ) -> ( cos ` A ) e. RR ) |
63 |
|
lttr |
|- ( ( 0 e. RR /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) |
64 |
36 61 62 63
|
mp3an2i |
|- ( A e. ( 0 (,] 1 ) -> ( ( 0 < ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) /\ ( 1 - ( 2 x. ( ( A ^ 2 ) / 3 ) ) ) < ( cos ` A ) ) -> 0 < ( cos ` A ) ) ) |
65 |
57 59 64
|
mp2and |
|- ( A e. ( 0 (,] 1 ) -> 0 < ( cos ` A ) ) |