| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A e. RR ) |
| 2 |
1
|
recoscld |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) e. RR ) |
| 3 |
|
1red |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 1 e. RR ) |
| 4 |
|
cosbnd |
|- ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) |
| 5 |
4
|
simprd |
|- ( A e. RR -> ( cos ` A ) <_ 1 ) |
| 6 |
1 5
|
syl |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) <_ 1 ) |
| 7 |
|
0zd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 e. ZZ ) |
| 8 |
|
2re |
|- 2 e. RR |
| 9 |
|
pire |
|- _pi e. RR |
| 10 |
8 9
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 11 |
10
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. RR ) |
| 12 |
|
0xr |
|- 0 e. RR* |
| 13 |
10
|
rexri |
|- ( 2 x. _pi ) e. RR* |
| 14 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) ) |
| 15 |
12 13 14
|
mp2an |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) |
| 16 |
15
|
simp2bi |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < A ) |
| 17 |
|
2rp |
|- 2 e. RR+ |
| 18 |
|
pirp |
|- _pi e. RR+ |
| 19 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
| 20 |
17 18 19
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
| 21 |
|
rpgt0 |
|- ( ( 2 x. _pi ) e. RR+ -> 0 < ( 2 x. _pi ) ) |
| 22 |
20 21
|
mp1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < ( 2 x. _pi ) ) |
| 23 |
1 11 16 22
|
divgt0d |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < ( A / ( 2 x. _pi ) ) ) |
| 24 |
20
|
a1i |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. RR+ ) |
| 25 |
15
|
simp3bi |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A < ( 2 x. _pi ) ) |
| 26 |
1 11 24 25
|
ltdiv1dd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < ( ( 2 x. _pi ) / ( 2 x. _pi ) ) ) |
| 27 |
11
|
recnd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. CC ) |
| 28 |
22
|
gt0ne0d |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) =/= 0 ) |
| 29 |
27 28
|
dividd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( ( 2 x. _pi ) / ( 2 x. _pi ) ) = 1 ) |
| 30 |
26 29
|
breqtrd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < 1 ) |
| 31 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 32 |
30 31
|
breqtrrdi |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < ( 0 + 1 ) ) |
| 33 |
|
btwnnz |
|- ( ( 0 e. ZZ /\ 0 < ( A / ( 2 x. _pi ) ) /\ ( A / ( 2 x. _pi ) ) < ( 0 + 1 ) ) -> -. ( A / ( 2 x. _pi ) ) e. ZZ ) |
| 34 |
7 23 32 33
|
syl3anc |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> -. ( A / ( 2 x. _pi ) ) e. ZZ ) |
| 35 |
1
|
recnd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A e. CC ) |
| 36 |
|
coseq1 |
|- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
| 37 |
35 36
|
syl |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
| 38 |
34 37
|
mtbird |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> -. ( cos ` A ) = 1 ) |
| 39 |
38
|
neqned |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) =/= 1 ) |
| 40 |
39
|
necomd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 1 =/= ( cos ` A ) ) |
| 41 |
2 3 6 40
|
leneltd |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |