Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
|- ( ( -. A < B /\ -. B < A ) <-> ( -. B < A /\ -. A < B ) ) |
2 |
|
cosord |
|- ( ( B e. ( 0 [,] _pi ) /\ A e. ( 0 [,] _pi ) ) -> ( B < A <-> ( cos ` A ) < ( cos ` B ) ) ) |
3 |
2
|
ancoms |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( B < A <-> ( cos ` A ) < ( cos ` B ) ) ) |
4 |
3
|
notbid |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( -. B < A <-> -. ( cos ` A ) < ( cos ` B ) ) ) |
5 |
|
cosord |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A < B <-> ( cos ` B ) < ( cos ` A ) ) ) |
6 |
5
|
notbid |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( -. A < B <-> -. ( cos ` B ) < ( cos ` A ) ) ) |
7 |
4 6
|
anbi12d |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( -. B < A /\ -. A < B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
8 |
1 7
|
syl5bb |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( -. A < B /\ -. B < A ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
9 |
|
0re |
|- 0 e. RR |
10 |
|
pire |
|- _pi e. RR |
11 |
9 10
|
elicc2i |
|- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
12 |
11
|
simp1bi |
|- ( A e. ( 0 [,] _pi ) -> A e. RR ) |
13 |
9 10
|
elicc2i |
|- ( B e. ( 0 [,] _pi ) <-> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) |
14 |
13
|
simp1bi |
|- ( B e. ( 0 [,] _pi ) -> B e. RR ) |
15 |
|
lttri3 |
|- ( ( A e. RR /\ B e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
16 |
12 14 15
|
syl2an |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
17 |
|
recoscl |
|- ( A e. RR -> ( cos ` A ) e. RR ) |
18 |
|
recoscl |
|- ( B e. RR -> ( cos ` B ) e. RR ) |
19 |
|
lttri3 |
|- ( ( ( cos ` A ) e. RR /\ ( cos ` B ) e. RR ) -> ( ( cos ` A ) = ( cos ` B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
20 |
17 18 19
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( cos ` A ) = ( cos ` B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
21 |
12 14 20
|
syl2an |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( ( cos ` A ) = ( cos ` B ) <-> ( -. ( cos ` A ) < ( cos ` B ) /\ -. ( cos ` B ) < ( cos ` A ) ) ) ) |
22 |
8 16 21
|
3bitr4d |
|- ( ( A e. ( 0 [,] _pi ) /\ B e. ( 0 [,] _pi ) ) -> ( A = B <-> ( cos ` A ) = ( cos ` B ) ) ) |