| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 2 | 1 | oveq1i |  |-  ( ( 1 ^ 2 ) / 3 ) = ( 1 / 3 ) | 
						
							| 3 | 2 | oveq2i |  |-  ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) = ( 2 x. ( 1 / 3 ) ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | 3cn |  |-  3 e. CC | 
						
							| 6 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 7 | 4 5 6 | divreci |  |-  ( 2 / 3 ) = ( 2 x. ( 1 / 3 ) ) | 
						
							| 8 | 3 7 | eqtr4i |  |-  ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) = ( 2 / 3 ) | 
						
							| 9 | 8 | oveq2i |  |-  ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) = ( 1 - ( 2 / 3 ) ) | 
						
							| 10 |  | ax-1cn |  |-  1 e. CC | 
						
							| 11 | 4 5 6 | divcli |  |-  ( 2 / 3 ) e. CC | 
						
							| 12 | 5 6 | reccli |  |-  ( 1 / 3 ) e. CC | 
						
							| 13 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 14 | 13 | oveq1i |  |-  ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) | 
						
							| 15 | 5 6 | dividi |  |-  ( 3 / 3 ) = 1 | 
						
							| 16 | 4 10 5 6 | divdiri |  |-  ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) | 
						
							| 17 | 14 15 16 | 3eqtr3ri |  |-  ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 | 
						
							| 18 | 10 11 12 17 | subaddrii |  |-  ( 1 - ( 2 / 3 ) ) = ( 1 / 3 ) | 
						
							| 19 | 9 18 | eqtri |  |-  ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) = ( 1 / 3 ) | 
						
							| 20 |  | 1re |  |-  1 e. RR | 
						
							| 21 |  | 0lt1 |  |-  0 < 1 | 
						
							| 22 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 23 |  | 0xr |  |-  0 e. RR* | 
						
							| 24 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) ) | 
						
							| 25 | 23 20 24 | mp2an |  |-  ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) | 
						
							| 26 |  | cos01bnd |  |-  ( 1 e. ( 0 (,] 1 ) -> ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) ) | 
						
							| 27 | 25 26 | sylbir |  |-  ( ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) -> ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) ) | 
						
							| 28 | 20 21 22 27 | mp3an |  |-  ( ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) ) | 
						
							| 29 | 28 | simpli |  |-  ( 1 - ( 2 x. ( ( 1 ^ 2 ) / 3 ) ) ) < ( cos ` 1 ) | 
						
							| 30 | 19 29 | eqbrtrri |  |-  ( 1 / 3 ) < ( cos ` 1 ) | 
						
							| 31 | 28 | simpri |  |-  ( cos ` 1 ) < ( 1 - ( ( 1 ^ 2 ) / 3 ) ) | 
						
							| 32 | 2 | oveq2i |  |-  ( 1 - ( ( 1 ^ 2 ) / 3 ) ) = ( 1 - ( 1 / 3 ) ) | 
						
							| 33 | 10 12 11 | subadd2i |  |-  ( ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) <-> ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) | 
						
							| 34 | 17 33 | mpbir |  |-  ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) | 
						
							| 35 | 32 34 | eqtri |  |-  ( 1 - ( ( 1 ^ 2 ) / 3 ) ) = ( 2 / 3 ) | 
						
							| 36 | 31 35 | breqtri |  |-  ( cos ` 1 ) < ( 2 / 3 ) | 
						
							| 37 | 30 36 | pm3.2i |  |-  ( ( 1 / 3 ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 2 / 3 ) ) |