Step |
Hyp |
Ref |
Expression |
1 |
|
7cn |
|- 7 e. CC |
2 |
|
9cn |
|- 9 e. CC |
3 |
|
9re |
|- 9 e. RR |
4 |
|
9pos |
|- 0 < 9 |
5 |
3 4
|
gt0ne0ii |
|- 9 =/= 0 |
6 |
|
divneg |
|- ( ( 7 e. CC /\ 9 e. CC /\ 9 =/= 0 ) -> -u ( 7 / 9 ) = ( -u 7 / 9 ) ) |
7 |
1 2 5 6
|
mp3an |
|- -u ( 7 / 9 ) = ( -u 7 / 9 ) |
8 |
|
2cn |
|- 2 e. CC |
9 |
2 5
|
pm3.2i |
|- ( 9 e. CC /\ 9 =/= 0 ) |
10 |
|
divsubdir |
|- ( ( 2 e. CC /\ 9 e. CC /\ ( 9 e. CC /\ 9 =/= 0 ) ) -> ( ( 2 - 9 ) / 9 ) = ( ( 2 / 9 ) - ( 9 / 9 ) ) ) |
11 |
8 2 9 10
|
mp3an |
|- ( ( 2 - 9 ) / 9 ) = ( ( 2 / 9 ) - ( 9 / 9 ) ) |
12 |
2 8
|
negsubdi2i |
|- -u ( 9 - 2 ) = ( 2 - 9 ) |
13 |
|
7p2e9 |
|- ( 7 + 2 ) = 9 |
14 |
2 8 1
|
subadd2i |
|- ( ( 9 - 2 ) = 7 <-> ( 7 + 2 ) = 9 ) |
15 |
13 14
|
mpbir |
|- ( 9 - 2 ) = 7 |
16 |
15
|
negeqi |
|- -u ( 9 - 2 ) = -u 7 |
17 |
12 16
|
eqtr3i |
|- ( 2 - 9 ) = -u 7 |
18 |
17
|
oveq1i |
|- ( ( 2 - 9 ) / 9 ) = ( -u 7 / 9 ) |
19 |
11 18
|
eqtr3i |
|- ( ( 2 / 9 ) - ( 9 / 9 ) ) = ( -u 7 / 9 ) |
20 |
2 5
|
dividi |
|- ( 9 / 9 ) = 1 |
21 |
20
|
oveq2i |
|- ( ( 2 / 9 ) - ( 9 / 9 ) ) = ( ( 2 / 9 ) - 1 ) |
22 |
7 19 21
|
3eqtr2ri |
|- ( ( 2 / 9 ) - 1 ) = -u ( 7 / 9 ) |
23 |
|
ax-1cn |
|- 1 e. CC |
24 |
8 23 2 5
|
divassi |
|- ( ( 2 x. 1 ) / 9 ) = ( 2 x. ( 1 / 9 ) ) |
25 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
26 |
25
|
oveq1i |
|- ( ( 2 x. 1 ) / 9 ) = ( 2 / 9 ) |
27 |
24 26
|
eqtr3i |
|- ( 2 x. ( 1 / 9 ) ) = ( 2 / 9 ) |
28 |
|
3cn |
|- 3 e. CC |
29 |
|
3ne0 |
|- 3 =/= 0 |
30 |
23 28 29
|
sqdivi |
|- ( ( 1 / 3 ) ^ 2 ) = ( ( 1 ^ 2 ) / ( 3 ^ 2 ) ) |
31 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
32 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
33 |
31 32
|
oveq12i |
|- ( ( 1 ^ 2 ) / ( 3 ^ 2 ) ) = ( 1 / 9 ) |
34 |
30 33
|
eqtri |
|- ( ( 1 / 3 ) ^ 2 ) = ( 1 / 9 ) |
35 |
|
cos1bnd |
|- ( ( 1 / 3 ) < ( cos ` 1 ) /\ ( cos ` 1 ) < ( 2 / 3 ) ) |
36 |
35
|
simpli |
|- ( 1 / 3 ) < ( cos ` 1 ) |
37 |
|
0le1 |
|- 0 <_ 1 |
38 |
|
3pos |
|- 0 < 3 |
39 |
|
1re |
|- 1 e. RR |
40 |
|
3re |
|- 3 e. RR |
41 |
39 40
|
divge0i |
|- ( ( 0 <_ 1 /\ 0 < 3 ) -> 0 <_ ( 1 / 3 ) ) |
42 |
37 38 41
|
mp2an |
|- 0 <_ ( 1 / 3 ) |
43 |
|
0re |
|- 0 e. RR |
44 |
|
recoscl |
|- ( 1 e. RR -> ( cos ` 1 ) e. RR ) |
45 |
39 44
|
ax-mp |
|- ( cos ` 1 ) e. RR |
46 |
40 29
|
rereccli |
|- ( 1 / 3 ) e. RR |
47 |
43 46 45
|
lelttri |
|- ( ( 0 <_ ( 1 / 3 ) /\ ( 1 / 3 ) < ( cos ` 1 ) ) -> 0 < ( cos ` 1 ) ) |
48 |
42 36 47
|
mp2an |
|- 0 < ( cos ` 1 ) |
49 |
43 45 48
|
ltleii |
|- 0 <_ ( cos ` 1 ) |
50 |
46 45
|
lt2sqi |
|- ( ( 0 <_ ( 1 / 3 ) /\ 0 <_ ( cos ` 1 ) ) -> ( ( 1 / 3 ) < ( cos ` 1 ) <-> ( ( 1 / 3 ) ^ 2 ) < ( ( cos ` 1 ) ^ 2 ) ) ) |
51 |
42 49 50
|
mp2an |
|- ( ( 1 / 3 ) < ( cos ` 1 ) <-> ( ( 1 / 3 ) ^ 2 ) < ( ( cos ` 1 ) ^ 2 ) ) |
52 |
36 51
|
mpbi |
|- ( ( 1 / 3 ) ^ 2 ) < ( ( cos ` 1 ) ^ 2 ) |
53 |
34 52
|
eqbrtrri |
|- ( 1 / 9 ) < ( ( cos ` 1 ) ^ 2 ) |
54 |
|
2pos |
|- 0 < 2 |
55 |
3 5
|
rereccli |
|- ( 1 / 9 ) e. RR |
56 |
45
|
resqcli |
|- ( ( cos ` 1 ) ^ 2 ) e. RR |
57 |
|
2re |
|- 2 e. RR |
58 |
55 56 57
|
ltmul2i |
|- ( 0 < 2 -> ( ( 1 / 9 ) < ( ( cos ` 1 ) ^ 2 ) <-> ( 2 x. ( 1 / 9 ) ) < ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) ) ) |
59 |
54 58
|
ax-mp |
|- ( ( 1 / 9 ) < ( ( cos ` 1 ) ^ 2 ) <-> ( 2 x. ( 1 / 9 ) ) < ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) ) |
60 |
53 59
|
mpbi |
|- ( 2 x. ( 1 / 9 ) ) < ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) |
61 |
27 60
|
eqbrtrri |
|- ( 2 / 9 ) < ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) |
62 |
57 3 5
|
redivcli |
|- ( 2 / 9 ) e. RR |
63 |
57 56
|
remulcli |
|- ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) e. RR |
64 |
|
ltsub1 |
|- ( ( ( 2 / 9 ) e. RR /\ ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) e. RR /\ 1 e. RR ) -> ( ( 2 / 9 ) < ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) <-> ( ( 2 / 9 ) - 1 ) < ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) ) ) |
65 |
62 63 39 64
|
mp3an |
|- ( ( 2 / 9 ) < ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) <-> ( ( 2 / 9 ) - 1 ) < ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) ) |
66 |
61 65
|
mpbi |
|- ( ( 2 / 9 ) - 1 ) < ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) |
67 |
22 66
|
eqbrtrri |
|- -u ( 7 / 9 ) < ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) |
68 |
25
|
fveq2i |
|- ( cos ` ( 2 x. 1 ) ) = ( cos ` 2 ) |
69 |
|
cos2t |
|- ( 1 e. CC -> ( cos ` ( 2 x. 1 ) ) = ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) ) |
70 |
23 69
|
ax-mp |
|- ( cos ` ( 2 x. 1 ) ) = ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) |
71 |
68 70
|
eqtr3i |
|- ( cos ` 2 ) = ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) |
72 |
67 71
|
breqtrri |
|- -u ( 7 / 9 ) < ( cos ` 2 ) |
73 |
35
|
simpri |
|- ( cos ` 1 ) < ( 2 / 3 ) |
74 |
|
0le2 |
|- 0 <_ 2 |
75 |
57 40
|
divge0i |
|- ( ( 0 <_ 2 /\ 0 < 3 ) -> 0 <_ ( 2 / 3 ) ) |
76 |
74 38 75
|
mp2an |
|- 0 <_ ( 2 / 3 ) |
77 |
57 40 29
|
redivcli |
|- ( 2 / 3 ) e. RR |
78 |
45 77
|
lt2sqi |
|- ( ( 0 <_ ( cos ` 1 ) /\ 0 <_ ( 2 / 3 ) ) -> ( ( cos ` 1 ) < ( 2 / 3 ) <-> ( ( cos ` 1 ) ^ 2 ) < ( ( 2 / 3 ) ^ 2 ) ) ) |
79 |
49 76 78
|
mp2an |
|- ( ( cos ` 1 ) < ( 2 / 3 ) <-> ( ( cos ` 1 ) ^ 2 ) < ( ( 2 / 3 ) ^ 2 ) ) |
80 |
73 79
|
mpbi |
|- ( ( cos ` 1 ) ^ 2 ) < ( ( 2 / 3 ) ^ 2 ) |
81 |
8 28 29
|
sqdivi |
|- ( ( 2 / 3 ) ^ 2 ) = ( ( 2 ^ 2 ) / ( 3 ^ 2 ) ) |
82 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
83 |
82 32
|
oveq12i |
|- ( ( 2 ^ 2 ) / ( 3 ^ 2 ) ) = ( 4 / 9 ) |
84 |
81 83
|
eqtri |
|- ( ( 2 / 3 ) ^ 2 ) = ( 4 / 9 ) |
85 |
80 84
|
breqtri |
|- ( ( cos ` 1 ) ^ 2 ) < ( 4 / 9 ) |
86 |
|
4re |
|- 4 e. RR |
87 |
86 3 5
|
redivcli |
|- ( 4 / 9 ) e. RR |
88 |
56 87 57
|
ltmul2i |
|- ( 0 < 2 -> ( ( ( cos ` 1 ) ^ 2 ) < ( 4 / 9 ) <-> ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) < ( 2 x. ( 4 / 9 ) ) ) ) |
89 |
54 88
|
ax-mp |
|- ( ( ( cos ` 1 ) ^ 2 ) < ( 4 / 9 ) <-> ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) < ( 2 x. ( 4 / 9 ) ) ) |
90 |
85 89
|
mpbi |
|- ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) < ( 2 x. ( 4 / 9 ) ) |
91 |
|
4cn |
|- 4 e. CC |
92 |
8 91 2 5
|
divassi |
|- ( ( 2 x. 4 ) / 9 ) = ( 2 x. ( 4 / 9 ) ) |
93 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
94 |
91 8 93
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
95 |
94
|
oveq1i |
|- ( ( 2 x. 4 ) / 9 ) = ( 8 / 9 ) |
96 |
92 95
|
eqtr3i |
|- ( 2 x. ( 4 / 9 ) ) = ( 8 / 9 ) |
97 |
90 96
|
breqtri |
|- ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) < ( 8 / 9 ) |
98 |
|
8re |
|- 8 e. RR |
99 |
98 3 5
|
redivcli |
|- ( 8 / 9 ) e. RR |
100 |
|
ltsub1 |
|- ( ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) e. RR /\ ( 8 / 9 ) e. RR /\ 1 e. RR ) -> ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) < ( 8 / 9 ) <-> ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) < ( ( 8 / 9 ) - 1 ) ) ) |
101 |
63 99 39 100
|
mp3an |
|- ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) < ( 8 / 9 ) <-> ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) < ( ( 8 / 9 ) - 1 ) ) |
102 |
97 101
|
mpbi |
|- ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) < ( ( 8 / 9 ) - 1 ) |
103 |
20
|
oveq2i |
|- ( ( 8 / 9 ) - ( 9 / 9 ) ) = ( ( 8 / 9 ) - 1 ) |
104 |
|
divneg |
|- ( ( 1 e. CC /\ 9 e. CC /\ 9 =/= 0 ) -> -u ( 1 / 9 ) = ( -u 1 / 9 ) ) |
105 |
23 2 5 104
|
mp3an |
|- -u ( 1 / 9 ) = ( -u 1 / 9 ) |
106 |
|
8cn |
|- 8 e. CC |
107 |
2 106
|
negsubdi2i |
|- -u ( 9 - 8 ) = ( 8 - 9 ) |
108 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
109 |
2 106 23 108
|
subaddrii |
|- ( 9 - 8 ) = 1 |
110 |
109
|
negeqi |
|- -u ( 9 - 8 ) = -u 1 |
111 |
107 110
|
eqtr3i |
|- ( 8 - 9 ) = -u 1 |
112 |
111
|
oveq1i |
|- ( ( 8 - 9 ) / 9 ) = ( -u 1 / 9 ) |
113 |
|
divsubdir |
|- ( ( 8 e. CC /\ 9 e. CC /\ ( 9 e. CC /\ 9 =/= 0 ) ) -> ( ( 8 - 9 ) / 9 ) = ( ( 8 / 9 ) - ( 9 / 9 ) ) ) |
114 |
106 2 9 113
|
mp3an |
|- ( ( 8 - 9 ) / 9 ) = ( ( 8 / 9 ) - ( 9 / 9 ) ) |
115 |
105 112 114
|
3eqtr2ri |
|- ( ( 8 / 9 ) - ( 9 / 9 ) ) = -u ( 1 / 9 ) |
116 |
103 115
|
eqtr3i |
|- ( ( 8 / 9 ) - 1 ) = -u ( 1 / 9 ) |
117 |
102 116
|
breqtri |
|- ( ( 2 x. ( ( cos ` 1 ) ^ 2 ) ) - 1 ) < -u ( 1 / 9 ) |
118 |
71 117
|
eqbrtri |
|- ( cos ` 2 ) < -u ( 1 / 9 ) |
119 |
72 118
|
pm3.2i |
|- ( -u ( 7 / 9 ) < ( cos ` 2 ) /\ ( cos ` 2 ) < -u ( 1 / 9 ) ) |