Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
|- _pi e. CC |
2 |
|
cos2t |
|- ( _pi e. CC -> ( cos ` ( 2 x. _pi ) ) = ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) ) |
3 |
1 2
|
ax-mp |
|- ( cos ` ( 2 x. _pi ) ) = ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) |
4 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
5 |
4
|
oveq1i |
|- ( ( cos ` _pi ) ^ 2 ) = ( -u 1 ^ 2 ) |
6 |
|
ax-1cn |
|- 1 e. CC |
7 |
|
sqneg |
|- ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) |
8 |
6 7
|
ax-mp |
|- ( -u 1 ^ 2 ) = ( 1 ^ 2 ) |
9 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
10 |
5 8 9
|
3eqtri |
|- ( ( cos ` _pi ) ^ 2 ) = 1 |
11 |
10
|
oveq2i |
|- ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) = ( 2 x. 1 ) |
12 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
13 |
11 12
|
eqtri |
|- ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) = 2 |
14 |
13
|
oveq1i |
|- ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) = ( 2 - 1 ) |
15 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
16 |
3 14 15
|
3eqtri |
|- ( cos ` ( 2 x. _pi ) ) = 1 |