| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn |  |-  _pi e. CC | 
						
							| 2 |  | cos2t |  |-  ( _pi e. CC -> ( cos ` ( 2 x. _pi ) ) = ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( cos ` ( 2 x. _pi ) ) = ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) | 
						
							| 4 |  | cospi |  |-  ( cos ` _pi ) = -u 1 | 
						
							| 5 | 4 | oveq1i |  |-  ( ( cos ` _pi ) ^ 2 ) = ( -u 1 ^ 2 ) | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 |  | sqneg |  |-  ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( -u 1 ^ 2 ) = ( 1 ^ 2 ) | 
						
							| 9 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 10 | 5 8 9 | 3eqtri |  |-  ( ( cos ` _pi ) ^ 2 ) = 1 | 
						
							| 11 | 10 | oveq2i |  |-  ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) = ( 2 x. 1 ) | 
						
							| 12 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 13 | 11 12 | eqtri |  |-  ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) = 2 | 
						
							| 14 | 13 | oveq1i |  |-  ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) = ( 2 - 1 ) | 
						
							| 15 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 16 | 3 14 15 | 3eqtri |  |-  ( cos ` ( 2 x. _pi ) ) = 1 |