Step |
Hyp |
Ref |
Expression |
1 |
|
acosval |
|- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
2 |
1
|
fveq2d |
|- ( A e. CC -> ( cos ` ( arccos ` A ) ) = ( cos ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
3 |
|
asincl |
|- ( A e. CC -> ( arcsin ` A ) e. CC ) |
4 |
|
coshalfpim |
|- ( ( arcsin ` A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( sin ` ( arcsin ` A ) ) ) |
5 |
3 4
|
syl |
|- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( sin ` ( arcsin ` A ) ) ) |
6 |
|
sinasin |
|- ( A e. CC -> ( sin ` ( arcsin ` A ) ) = A ) |
7 |
2 5 6
|
3eqtrd |
|- ( A e. CC -> ( cos ` ( arccos ` A ) ) = A ) |