| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosargd.1 |  |-  ( ph -> X e. CC ) | 
						
							| 2 |  | cosargd.2 |  |-  ( ph -> X =/= 0 ) | 
						
							| 3 | 1 2 | cosargd |  |-  ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( Re ` X ) / ( abs ` X ) ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( ph -> ( ( cos ` ( Im ` ( log ` X ) ) ) = 0 <-> ( ( Re ` X ) / ( abs ` X ) ) = 0 ) ) | 
						
							| 5 | 1 | recld |  |-  ( ph -> ( Re ` X ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ph -> ( Re ` X ) e. CC ) | 
						
							| 7 | 1 | abscld |  |-  ( ph -> ( abs ` X ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( ph -> ( abs ` X ) e. CC ) | 
						
							| 9 | 1 2 | absne0d |  |-  ( ph -> ( abs ` X ) =/= 0 ) | 
						
							| 10 | 6 8 9 | diveq0ad |  |-  ( ph -> ( ( ( Re ` X ) / ( abs ` X ) ) = 0 <-> ( Re ` X ) = 0 ) ) | 
						
							| 11 | 4 10 | bitrd |  |-  ( ph -> ( ( cos ` ( Im ` ( log ` X ) ) ) = 0 <-> ( Re ` X ) = 0 ) ) |