| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cosargd.1 |  |-  ( ph -> X e. CC ) | 
						
							| 2 |  | cosargd.2 |  |-  ( ph -> X =/= 0 ) | 
						
							| 3 | 1 | cjcld |  |-  ( ph -> ( * ` X ) e. CC ) | 
						
							| 4 | 1 3 | addcld |  |-  ( ph -> ( X + ( * ` X ) ) e. CC ) | 
						
							| 5 | 1 | abscld |  |-  ( ph -> ( abs ` X ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ph -> ( abs ` X ) e. CC ) | 
						
							| 7 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 8 | 1 2 | absne0d |  |-  ( ph -> ( abs ` X ) =/= 0 ) | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 11 | 4 6 7 8 10 | divdiv32d |  |-  ( ph -> ( ( ( X + ( * ` X ) ) / ( abs ` X ) ) / 2 ) = ( ( ( X + ( * ` X ) ) / 2 ) / ( abs ` X ) ) ) | 
						
							| 12 | 1 2 | logcld |  |-  ( ph -> ( log ` X ) e. CC ) | 
						
							| 13 | 12 | imcld |  |-  ( ph -> ( Im ` ( log ` X ) ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ph -> ( Im ` ( log ` X ) ) e. CC ) | 
						
							| 15 |  | cosval |  |-  ( ( Im ` ( log ` X ) ) e. CC -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) / 2 ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) / 2 ) ) | 
						
							| 17 |  | efiarg |  |-  ( ( X e. CC /\ X =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( X / ( abs ` X ) ) ) | 
						
							| 18 | 1 2 17 | syl2anc |  |-  ( ph -> ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( X / ( abs ` X ) ) ) | 
						
							| 19 |  | ax-icn |  |-  _i e. CC | 
						
							| 20 | 19 | a1i |  |-  ( ph -> _i e. CC ) | 
						
							| 21 | 20 14 | mulcld |  |-  ( ph -> ( _i x. ( Im ` ( log ` X ) ) ) e. CC ) | 
						
							| 22 |  | efcj |  |-  ( ( _i x. ( Im ` ( log ` X ) ) ) e. CC -> ( exp ` ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( * ` ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> ( exp ` ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( * ` ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) ) | 
						
							| 24 | 20 14 | cjmuld |  |-  ( ph -> ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( ( * ` _i ) x. ( * ` ( Im ` ( log ` X ) ) ) ) ) | 
						
							| 25 |  | cji |  |-  ( * ` _i ) = -u _i | 
						
							| 26 | 25 | a1i |  |-  ( ph -> ( * ` _i ) = -u _i ) | 
						
							| 27 | 13 | cjred |  |-  ( ph -> ( * ` ( Im ` ( log ` X ) ) ) = ( Im ` ( log ` X ) ) ) | 
						
							| 28 | 26 27 | oveq12d |  |-  ( ph -> ( ( * ` _i ) x. ( * ` ( Im ` ( log ` X ) ) ) ) = ( -u _i x. ( Im ` ( log ` X ) ) ) ) | 
						
							| 29 | 24 28 | eqtrd |  |-  ( ph -> ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( -u _i x. ( Im ` ( log ` X ) ) ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ph -> ( exp ` ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) | 
						
							| 31 | 18 | fveq2d |  |-  ( ph -> ( * ` ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( * ` ( X / ( abs ` X ) ) ) ) | 
						
							| 32 | 23 30 31 | 3eqtr3d |  |-  ( ph -> ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) = ( * ` ( X / ( abs ` X ) ) ) ) | 
						
							| 33 | 1 6 8 | cjdivd |  |-  ( ph -> ( * ` ( X / ( abs ` X ) ) ) = ( ( * ` X ) / ( * ` ( abs ` X ) ) ) ) | 
						
							| 34 | 5 | cjred |  |-  ( ph -> ( * ` ( abs ` X ) ) = ( abs ` X ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ph -> ( ( * ` X ) / ( * ` ( abs ` X ) ) ) = ( ( * ` X ) / ( abs ` X ) ) ) | 
						
							| 36 | 32 33 35 | 3eqtrd |  |-  ( ph -> ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) = ( ( * ` X ) / ( abs ` X ) ) ) | 
						
							| 37 | 18 36 | oveq12d |  |-  ( ph -> ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) = ( ( X / ( abs ` X ) ) + ( ( * ` X ) / ( abs ` X ) ) ) ) | 
						
							| 38 | 1 3 6 8 | divdird |  |-  ( ph -> ( ( X + ( * ` X ) ) / ( abs ` X ) ) = ( ( X / ( abs ` X ) ) + ( ( * ` X ) / ( abs ` X ) ) ) ) | 
						
							| 39 | 37 38 | eqtr4d |  |-  ( ph -> ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) = ( ( X + ( * ` X ) ) / ( abs ` X ) ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ph -> ( ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) / 2 ) = ( ( ( X + ( * ` X ) ) / ( abs ` X ) ) / 2 ) ) | 
						
							| 41 | 16 40 | eqtrd |  |-  ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( ( X + ( * ` X ) ) / ( abs ` X ) ) / 2 ) ) | 
						
							| 42 |  | reval |  |-  ( X e. CC -> ( Re ` X ) = ( ( X + ( * ` X ) ) / 2 ) ) | 
						
							| 43 | 1 42 | syl |  |-  ( ph -> ( Re ` X ) = ( ( X + ( * ` X ) ) / 2 ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ph -> ( ( Re ` X ) / ( abs ` X ) ) = ( ( ( X + ( * ` X ) ) / 2 ) / ( abs ` X ) ) ) | 
						
							| 45 | 11 41 44 | 3eqtr4d |  |-  ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( Re ` X ) / ( abs ` X ) ) ) |