| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asincl |
|- ( A e. CC -> ( arcsin ` A ) e. CC ) |
| 2 |
|
cosval |
|- ( ( arcsin ` A ) e. CC -> ( cos ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) ) |
| 3 |
1 2
|
syl |
|- ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) ) |
| 4 |
|
ax-1cn |
|- 1 e. CC |
| 5 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 6 |
|
subcl |
|- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 7 |
4 5 6
|
sylancr |
|- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 8 |
7
|
sqrtcld |
|- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 9 |
|
ax-icn |
|- _i e. CC |
| 10 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 11 |
9 10
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 12 |
8 11 8
|
ppncand |
|- ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) + ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 13 |
|
efiasin |
|- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 14 |
11 8 13
|
comraddd |
|- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) ) |
| 15 |
|
mulneg12 |
|- ( ( _i e. CC /\ ( arcsin ` A ) e. CC ) -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
| 16 |
9 1 15
|
sylancr |
|- ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
| 17 |
|
asinneg |
|- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |
| 18 |
17
|
oveq2d |
|- ( A e. CC -> ( _i x. ( arcsin ` -u A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
| 19 |
16 18
|
eqtr4d |
|- ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. ( arcsin ` -u A ) ) ) |
| 20 |
19
|
fveq2d |
|- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( exp ` ( _i x. ( arcsin ` -u A ) ) ) ) |
| 21 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 22 |
|
efiasin |
|- ( -u A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 23 |
21 22
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 24 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 25 |
9 24
|
mpan |
|- ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 26 |
|
sqneg |
|- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 27 |
26
|
oveq2d |
|- ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) |
| 28 |
27
|
fveq2d |
|- ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 29 |
25 28
|
oveq12d |
|- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 30 |
20 23 29
|
3eqtrd |
|- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 31 |
11
|
negcld |
|- ( A e. CC -> -u ( _i x. A ) e. CC ) |
| 32 |
31 8
|
addcomd |
|- ( A e. CC -> ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) ) |
| 33 |
8 11
|
negsubd |
|- ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) |
| 34 |
30 32 33
|
3eqtrd |
|- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) |
| 35 |
14 34
|
oveq12d |
|- ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) + ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) |
| 36 |
8
|
2timesd |
|- ( A e. CC -> ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 37 |
12 35 36
|
3eqtr4d |
|- ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 38 |
37
|
oveq1d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) = ( ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) / 2 ) ) |
| 39 |
|
2cnd |
|- ( A e. CC -> 2 e. CC ) |
| 40 |
|
2ne0 |
|- 2 =/= 0 |
| 41 |
40
|
a1i |
|- ( A e. CC -> 2 =/= 0 ) |
| 42 |
8 39 41
|
divcan3d |
|- ( A e. CC -> ( ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) / 2 ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 43 |
3 38 42
|
3eqtrd |
|- ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |