Step |
Hyp |
Ref |
Expression |
1 |
|
atancl |
|- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
2 |
|
cosval |
|- ( ( arctan ` A ) e. CC -> ( cos ` ( arctan ` A ) ) = ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) ) |
3 |
1 2
|
syl |
|- ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) ) |
4 |
|
efiatan2 |
|- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
5 |
|
ax-icn |
|- _i e. CC |
6 |
|
mulneg12 |
|- ( ( _i e. CC /\ ( arctan ` A ) e. CC ) -> ( -u _i x. ( arctan ` A ) ) = ( _i x. -u ( arctan ` A ) ) ) |
7 |
5 1 6
|
sylancr |
|- ( A e. dom arctan -> ( -u _i x. ( arctan ` A ) ) = ( _i x. -u ( arctan ` A ) ) ) |
8 |
|
atanneg |
|- ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |
9 |
8
|
oveq2d |
|- ( A e. dom arctan -> ( _i x. ( arctan ` -u A ) ) = ( _i x. -u ( arctan ` A ) ) ) |
10 |
7 9
|
eqtr4d |
|- ( A e. dom arctan -> ( -u _i x. ( arctan ` A ) ) = ( _i x. ( arctan ` -u A ) ) ) |
11 |
10
|
fveq2d |
|- ( A e. dom arctan -> ( exp ` ( -u _i x. ( arctan ` A ) ) ) = ( exp ` ( _i x. ( arctan ` -u A ) ) ) ) |
12 |
|
atandmneg |
|- ( A e. dom arctan -> -u A e. dom arctan ) |
13 |
|
efiatan2 |
|- ( -u A e. dom arctan -> ( exp ` ( _i x. ( arctan ` -u A ) ) ) = ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) ) |
14 |
12 13
|
syl |
|- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` -u A ) ) ) = ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) ) |
15 |
|
atandm4 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |
16 |
15
|
simplbi |
|- ( A e. dom arctan -> A e. CC ) |
17 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
18 |
5 16 17
|
sylancr |
|- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
19 |
18
|
oveq2d |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
20 |
|
ax-1cn |
|- 1 e. CC |
21 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
22 |
5 16 21
|
sylancr |
|- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
23 |
|
negsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
24 |
20 22 23
|
sylancr |
|- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
25 |
19 24
|
eqtrd |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
26 |
|
sqneg |
|- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
27 |
16 26
|
syl |
|- ( A e. dom arctan -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
28 |
27
|
oveq2d |
|- ( A e. dom arctan -> ( 1 + ( -u A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) |
29 |
28
|
fveq2d |
|- ( A e. dom arctan -> ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
30 |
25 29
|
oveq12d |
|- ( A e. dom arctan -> ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) = ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
31 |
11 14 30
|
3eqtrd |
|- ( A e. dom arctan -> ( exp ` ( -u _i x. ( arctan ` A ) ) ) = ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
32 |
4 31
|
oveq12d |
|- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) = ( ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) + ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) ) |
33 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
34 |
20 22 33
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
35 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
36 |
20 22 35
|
sylancr |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
37 |
16
|
sqcld |
|- ( A e. dom arctan -> ( A ^ 2 ) e. CC ) |
38 |
|
addcl |
|- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 + ( A ^ 2 ) ) e. CC ) |
39 |
20 37 38
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) e. CC ) |
40 |
39
|
sqrtcld |
|- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC ) |
41 |
39
|
sqsqrtd |
|- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) = ( 1 + ( A ^ 2 ) ) ) |
42 |
15
|
simprbi |
|- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) =/= 0 ) |
43 |
41 42
|
eqnetrd |
|- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 ) |
44 |
|
sqne0 |
|- ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
45 |
40 44
|
syl |
|- ( A e. dom arctan -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
46 |
43 45
|
mpbid |
|- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) |
47 |
34 36 40 46
|
divdird |
|- ( A e. dom arctan -> ( ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) + ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) ) |
48 |
20
|
a1i |
|- ( A e. dom arctan -> 1 e. CC ) |
49 |
48 22 48
|
ppncand |
|- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) = ( 1 + 1 ) ) |
50 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
51 |
49 50
|
eqtr4di |
|- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) = 2 ) |
52 |
51
|
oveq1d |
|- ( A e. dom arctan -> ( ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
53 |
32 47 52
|
3eqtr2d |
|- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) = ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
54 |
53
|
oveq1d |
|- ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) ) |
55 |
|
2cnd |
|- ( A e. dom arctan -> 2 e. CC ) |
56 |
|
2ne0 |
|- 2 =/= 0 |
57 |
56
|
a1i |
|- ( A e. dom arctan -> 2 =/= 0 ) |
58 |
55 40 55 46 57
|
divdiv32d |
|- ( A e. dom arctan -> ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) = ( ( 2 / 2 ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
59 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
60 |
59
|
oveq1i |
|- ( ( 2 / 2 ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
61 |
58 60
|
eqtrdi |
|- ( A e. dom arctan -> ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
62 |
3 54 61
|
3eqtrd |
|- ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |