Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> ( cos ` A ) = 0 ) |
2 |
|
simpl |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. ( 0 [,] _pi ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
pire |
|- _pi e. RR |
5 |
3 4
|
elicc2i |
|- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
6 |
2 5
|
sylib |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
7 |
6
|
simp1d |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. RR ) |
8 |
7
|
ad2antrr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> A e. RR ) |
9 |
|
simpr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> 0 < A ) |
10 |
|
simplr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> A < ( _pi / 2 ) ) |
11 |
3
|
rexri |
|- 0 e. RR* |
12 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
13 |
12
|
rexri |
|- ( _pi / 2 ) e. RR* |
14 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) |
15 |
11 13 14
|
mp2an |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) |
16 |
8 9 10 15
|
syl3anbrc |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> A e. ( 0 (,) ( _pi / 2 ) ) ) |
17 |
|
sincosq1sgn |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
18 |
16 17
|
syl |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
19 |
18
|
simprd |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> 0 < ( cos ` A ) ) |
20 |
19
|
gt0ne0d |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 < A ) -> ( cos ` A ) =/= 0 ) |
21 |
|
simpr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> 0 = A ) |
22 |
21
|
fveq2d |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> ( cos ` 0 ) = ( cos ` A ) ) |
23 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
24 |
22 23
|
eqtr3di |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> ( cos ` A ) = 1 ) |
25 |
|
ax-1ne0 |
|- 1 =/= 0 |
26 |
25
|
a1i |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> 1 =/= 0 ) |
27 |
24 26
|
eqnetrd |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) /\ 0 = A ) -> ( cos ` A ) =/= 0 ) |
28 |
6
|
simp2d |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> 0 <_ A ) |
29 |
|
0red |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> 0 e. RR ) |
30 |
29 7
|
leloed |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
31 |
28 30
|
mpbid |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( 0 < A \/ 0 = A ) ) |
32 |
31
|
adantr |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> ( 0 < A \/ 0 = A ) ) |
33 |
20 27 32
|
mpjaodan |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> ( cos ` A ) =/= 0 ) |
34 |
1 33
|
pm2.21ddne |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A < ( _pi / 2 ) ) -> A = ( _pi / 2 ) ) |
35 |
|
simpr |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ A = ( _pi / 2 ) ) -> A = ( _pi / 2 ) ) |
36 |
|
simplr |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> ( cos ` A ) = 0 ) |
37 |
7
|
ad2antrr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> A e. RR ) |
38 |
|
simplr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( _pi / 2 ) < A ) |
39 |
|
simpr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> A < _pi ) |
40 |
4
|
rexri |
|- _pi e. RR* |
41 |
|
elioo2 |
|- ( ( ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) ) |
42 |
13 40 41
|
mp2an |
|- ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) |
43 |
37 38 39 42
|
syl3anbrc |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> A e. ( ( _pi / 2 ) (,) _pi ) ) |
44 |
|
sincosq2sgn |
|- ( A e. ( ( _pi / 2 ) (,) _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |
45 |
43 44
|
syl |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |
46 |
45
|
simprd |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( cos ` A ) < 0 ) |
47 |
46
|
lt0ne0d |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A < _pi ) -> ( cos ` A ) =/= 0 ) |
48 |
|
simpr |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> A = _pi ) |
49 |
48
|
fveq2d |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> ( cos ` A ) = ( cos ` _pi ) ) |
50 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
51 |
49 50
|
eqtrdi |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> ( cos ` A ) = -u 1 ) |
52 |
|
neg1ne0 |
|- -u 1 =/= 0 |
53 |
52
|
a1i |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> -u 1 =/= 0 ) |
54 |
51 53
|
eqnetrd |
|- ( ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) /\ A = _pi ) -> ( cos ` A ) =/= 0 ) |
55 |
6
|
simp3d |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A <_ _pi ) |
56 |
4
|
a1i |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> _pi e. RR ) |
57 |
7 56
|
leloed |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A <_ _pi <-> ( A < _pi \/ A = _pi ) ) ) |
58 |
55 57
|
mpbid |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A < _pi \/ A = _pi ) ) |
59 |
58
|
adantr |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> ( A < _pi \/ A = _pi ) ) |
60 |
47 54 59
|
mpjaodan |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> ( cos ` A ) =/= 0 ) |
61 |
36 60
|
pm2.21ddne |
|- ( ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) /\ ( _pi / 2 ) < A ) -> A = ( _pi / 2 ) ) |
62 |
56
|
rehalfcld |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( _pi / 2 ) e. RR ) |
63 |
7 62
|
lttri4d |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A < ( _pi / 2 ) \/ A = ( _pi / 2 ) \/ ( _pi / 2 ) < A ) ) |
64 |
34 35 61 63
|
mpjao3dan |
|- ( ( A e. ( 0 [,] _pi ) /\ ( cos ` A ) = 0 ) -> A = ( _pi / 2 ) ) |
65 |
|
fveq2 |
|- ( A = ( _pi / 2 ) -> ( cos ` A ) = ( cos ` ( _pi / 2 ) ) ) |
66 |
|
coshalfpi |
|- ( cos ` ( _pi / 2 ) ) = 0 |
67 |
65 66
|
eqtrdi |
|- ( A = ( _pi / 2 ) -> ( cos ` A ) = 0 ) |
68 |
67
|
adantl |
|- ( ( A e. ( 0 [,] _pi ) /\ A = ( _pi / 2 ) ) -> ( cos ` A ) = 0 ) |
69 |
64 68
|
impbida |
|- ( A e. ( 0 [,] _pi ) -> ( ( cos ` A ) = 0 <-> A = ( _pi / 2 ) ) ) |