| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cn |  |-  2 e. CC | 
						
							| 2 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 3 |  | divcan2 |  |-  ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) | 
						
							| 4 | 1 2 3 | mp3an23 |  |-  ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) | 
						
							| 5 | 4 | fveq2d |  |-  ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( cos ` A ) ) | 
						
							| 6 |  | halfcl |  |-  ( A e. CC -> ( A / 2 ) e. CC ) | 
						
							| 7 |  | cos2tsin |  |-  ( ( A / 2 ) e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) | 
						
							| 9 | 5 8 | eqtr3d |  |-  ( A e. CC -> ( cos ` A ) = ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( A e. CC -> ( ( cos ` A ) = 1 <-> ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 ) ) | 
						
							| 11 | 6 | sincld |  |-  ( A e. CC -> ( sin ` ( A / 2 ) ) e. CC ) | 
						
							| 12 | 11 | sqcld |  |-  ( A e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) | 
						
							| 13 |  | mulcl |  |-  ( ( 2 e. CC /\ ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC ) | 
						
							| 14 | 1 12 13 | sylancr |  |-  ( A e. CC -> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC ) | 
						
							| 15 |  | ax-1cn |  |-  1 e. CC | 
						
							| 16 |  | subsub23 |  |-  ( ( 1 e. CC /\ ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC /\ 1 e. CC ) -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) | 
						
							| 17 | 15 15 16 | mp3an13 |  |-  ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) | 
						
							| 18 | 14 17 | syl |  |-  ( A e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) ) | 
						
							| 19 |  | eqcom |  |-  ( ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - 1 ) ) | 
						
							| 20 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 21 | 20 | eqeq2i |  |-  ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - 1 ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) | 
						
							| 22 | 19 21 | bitri |  |-  ( ( 1 - 1 ) = ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) | 
						
							| 23 | 18 22 | bitrdi |  |-  ( A e. CC -> ( ( 1 - ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) ) = 1 <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) ) | 
						
							| 24 | 10 23 | bitrd |  |-  ( A e. CC -> ( ( cos ` A ) = 1 <-> ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 ) ) | 
						
							| 25 |  | mul0or |  |-  ( ( 2 e. CC /\ ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) | 
						
							| 26 | 1 12 25 | sylancr |  |-  ( A e. CC -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) | 
						
							| 27 | 2 | neii |  |-  -. 2 = 0 | 
						
							| 28 |  | biorf |  |-  ( -. 2 = 0 -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) ) | 
						
							| 29 | 27 28 | ax-mp |  |-  ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) | 
						
							| 30 | 26 29 | bitr4di |  |-  ( A e. CC -> ( ( 2 x. ( ( sin ` ( A / 2 ) ) ^ 2 ) ) = 0 <-> ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 ) ) | 
						
							| 31 |  | sqeq0 |  |-  ( ( sin ` ( A / 2 ) ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( sin ` ( A / 2 ) ) = 0 ) ) | 
						
							| 32 | 11 31 | syl |  |-  ( A e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) = 0 <-> ( sin ` ( A / 2 ) ) = 0 ) ) | 
						
							| 33 | 24 30 32 | 3bitrd |  |-  ( A e. CC -> ( ( cos ` A ) = 1 <-> ( sin ` ( A / 2 ) ) = 0 ) ) | 
						
							| 34 |  | sineq0 |  |-  ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) | 
						
							| 35 | 6 34 | syl |  |-  ( A e. CC -> ( ( sin ` ( A / 2 ) ) = 0 <-> ( ( A / 2 ) / _pi ) e. ZZ ) ) | 
						
							| 36 | 1 2 | pm3.2i |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 37 |  | picn |  |-  _pi e. CC | 
						
							| 38 |  | pire |  |-  _pi e. RR | 
						
							| 39 |  | pipos |  |-  0 < _pi | 
						
							| 40 | 38 39 | gt0ne0ii |  |-  _pi =/= 0 | 
						
							| 41 | 37 40 | pm3.2i |  |-  ( _pi e. CC /\ _pi =/= 0 ) | 
						
							| 42 |  | divdiv1 |  |-  ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( A / 2 ) / _pi ) = ( A / ( 2 x. _pi ) ) ) | 
						
							| 43 | 36 41 42 | mp3an23 |  |-  ( A e. CC -> ( ( A / 2 ) / _pi ) = ( A / ( 2 x. _pi ) ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( A e. CC -> ( ( ( A / 2 ) / _pi ) e. ZZ <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) | 
						
							| 45 | 33 35 44 | 3bitrd |  |-  ( A e. CC -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |