Step |
Hyp |
Ref |
Expression |
1 |
|
df-cos |
|- cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
mulcl |
|- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
4 |
2 3
|
mpan |
|- ( x e. CC -> ( _i x. x ) e. CC ) |
5 |
|
efcl |
|- ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
6 |
4 5
|
syl |
|- ( x e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
7 |
|
negicn |
|- -u _i e. CC |
8 |
|
mulcl |
|- ( ( -u _i e. CC /\ x e. CC ) -> ( -u _i x. x ) e. CC ) |
9 |
7 8
|
mpan |
|- ( x e. CC -> ( -u _i x. x ) e. CC ) |
10 |
|
efcl |
|- ( ( -u _i x. x ) e. CC -> ( exp ` ( -u _i x. x ) ) e. CC ) |
11 |
9 10
|
syl |
|- ( x e. CC -> ( exp ` ( -u _i x. x ) ) e. CC ) |
12 |
6 11
|
addcld |
|- ( x e. CC -> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) e. CC ) |
13 |
12
|
halfcld |
|- ( x e. CC -> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) e. CC ) |
14 |
1 13
|
fmpti |
|- cos : CC --> CC |