| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 4 |  | cosval |  |-  ( ( _i x. A ) e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) ) | 
						
							| 6 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 7 |  | efcl |  |-  ( -u A e. CC -> ( exp ` -u A ) e. CC ) | 
						
							| 8 | 6 7 | syl |  |-  ( A e. CC -> ( exp ` -u A ) e. CC ) | 
						
							| 9 |  | efcl |  |-  ( A e. CC -> ( exp ` A ) e. CC ) | 
						
							| 10 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 11 | 10 | oveq1i |  |-  ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) | 
						
							| 12 |  | mulass |  |-  ( ( _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) | 
						
							| 13 | 1 1 12 | mp3an12 |  |-  ( A e. CC -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) | 
						
							| 14 |  | mulm1 |  |-  ( A e. CC -> ( -u 1 x. A ) = -u A ) | 
						
							| 15 | 11 13 14 | 3eqtr3a |  |-  ( A e. CC -> ( _i x. ( _i x. A ) ) = -u A ) | 
						
							| 16 | 15 | fveq2d |  |-  ( A e. CC -> ( exp ` ( _i x. ( _i x. A ) ) ) = ( exp ` -u A ) ) | 
						
							| 17 | 1 1 | mulneg1i |  |-  ( -u _i x. _i ) = -u ( _i x. _i ) | 
						
							| 18 | 10 | negeqi |  |-  -u ( _i x. _i ) = -u -u 1 | 
						
							| 19 |  | negneg1e1 |  |-  -u -u 1 = 1 | 
						
							| 20 | 17 18 19 | 3eqtri |  |-  ( -u _i x. _i ) = 1 | 
						
							| 21 | 20 | oveq1i |  |-  ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) | 
						
							| 22 |  | negicn |  |-  -u _i e. CC | 
						
							| 23 |  | mulass |  |-  ( ( -u _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) | 
						
							| 24 | 22 1 23 | mp3an12 |  |-  ( A e. CC -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) | 
						
							| 25 |  | mullid |  |-  ( A e. CC -> ( 1 x. A ) = A ) | 
						
							| 26 | 21 24 25 | 3eqtr3a |  |-  ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A ) | 
						
							| 27 | 26 | fveq2d |  |-  ( A e. CC -> ( exp ` ( -u _i x. ( _i x. A ) ) ) = ( exp ` A ) ) | 
						
							| 28 | 16 27 | oveq12d |  |-  ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` -u A ) + ( exp ` A ) ) ) | 
						
							| 29 | 8 9 28 | comraddd |  |-  ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` A ) + ( exp ` -u A ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( A e. CC -> ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) | 
						
							| 31 | 5 30 | eqtrd |  |-  ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |