Metamath Proof Explorer


Theorem coshval

Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion coshval
|- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) )

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 mulcl
 |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC )
3 1 2 mpan
 |-  ( A e. CC -> ( _i x. A ) e. CC )
4 cosval
 |-  ( ( _i x. A ) e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) )
5 3 4 syl
 |-  ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) )
6 negcl
 |-  ( A e. CC -> -u A e. CC )
7 efcl
 |-  ( -u A e. CC -> ( exp ` -u A ) e. CC )
8 6 7 syl
 |-  ( A e. CC -> ( exp ` -u A ) e. CC )
9 efcl
 |-  ( A e. CC -> ( exp ` A ) e. CC )
10 ixi
 |-  ( _i x. _i ) = -u 1
11 10 oveq1i
 |-  ( ( _i x. _i ) x. A ) = ( -u 1 x. A )
12 mulass
 |-  ( ( _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) )
13 1 1 12 mp3an12
 |-  ( A e. CC -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) )
14 mulm1
 |-  ( A e. CC -> ( -u 1 x. A ) = -u A )
15 11 13 14 3eqtr3a
 |-  ( A e. CC -> ( _i x. ( _i x. A ) ) = -u A )
16 15 fveq2d
 |-  ( A e. CC -> ( exp ` ( _i x. ( _i x. A ) ) ) = ( exp ` -u A ) )
17 1 1 mulneg1i
 |-  ( -u _i x. _i ) = -u ( _i x. _i )
18 10 negeqi
 |-  -u ( _i x. _i ) = -u -u 1
19 negneg1e1
 |-  -u -u 1 = 1
20 17 18 19 3eqtri
 |-  ( -u _i x. _i ) = 1
21 20 oveq1i
 |-  ( ( -u _i x. _i ) x. A ) = ( 1 x. A )
22 negicn
 |-  -u _i e. CC
23 mulass
 |-  ( ( -u _i e. CC /\ _i e. CC /\ A e. CC ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) )
24 22 1 23 mp3an12
 |-  ( A e. CC -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) )
25 mulid2
 |-  ( A e. CC -> ( 1 x. A ) = A )
26 21 24 25 3eqtr3a
 |-  ( A e. CC -> ( -u _i x. ( _i x. A ) ) = A )
27 26 fveq2d
 |-  ( A e. CC -> ( exp ` ( -u _i x. ( _i x. A ) ) ) = ( exp ` A ) )
28 16 27 oveq12d
 |-  ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` -u A ) + ( exp ` A ) ) )
29 8 9 28 comraddd
 |-  ( A e. CC -> ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) = ( ( exp ` A ) + ( exp ` -u A ) ) )
30 29 oveq1d
 |-  ( A e. CC -> ( ( ( exp ` ( _i x. ( _i x. A ) ) ) + ( exp ` ( -u _i x. ( _i x. A ) ) ) ) / 2 ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) )
31 5 30 eqtrd
 |-  ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) )