Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
divides |
|- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
3 |
1 2
|
mpan |
|- ( K e. ZZ -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
4 |
3
|
biimpa |
|- ( ( K e. ZZ /\ 2 || K ) -> E. n e. ZZ ( n x. 2 ) = K ) |
5 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
6 |
|
2cnd |
|- ( n e. ZZ -> 2 e. CC ) |
7 |
|
picn |
|- _pi e. CC |
8 |
7
|
a1i |
|- ( n e. ZZ -> _pi e. CC ) |
9 |
5 6 8
|
mulassd |
|- ( n e. ZZ -> ( ( n x. 2 ) x. _pi ) = ( n x. ( 2 x. _pi ) ) ) |
10 |
9
|
eqcomd |
|- ( n e. ZZ -> ( n x. ( 2 x. _pi ) ) = ( ( n x. 2 ) x. _pi ) ) |
11 |
10
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( n x. ( 2 x. _pi ) ) = ( ( n x. 2 ) x. _pi ) ) |
12 |
|
oveq1 |
|- ( ( n x. 2 ) = K -> ( ( n x. 2 ) x. _pi ) = ( K x. _pi ) ) |
13 |
12
|
adantl |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( ( n x. 2 ) x. _pi ) = ( K x. _pi ) ) |
14 |
11 13
|
eqtr2d |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( K x. _pi ) = ( n x. ( 2 x. _pi ) ) ) |
15 |
14
|
fveq2d |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = ( cos ` ( n x. ( 2 x. _pi ) ) ) ) |
16 |
|
cos2kpi |
|- ( n e. ZZ -> ( cos ` ( n x. ( 2 x. _pi ) ) ) = 1 ) |
17 |
16
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( n x. ( 2 x. _pi ) ) ) = 1 ) |
18 |
15 17
|
eqtrd |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = 1 ) |
19 |
18
|
3adant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = 1 ) |
20 |
|
iftrue |
|- ( 2 || K -> if ( 2 || K , 1 , -u 1 ) = 1 ) |
21 |
20
|
eqcomd |
|- ( 2 || K -> 1 = if ( 2 || K , 1 , -u 1 ) ) |
22 |
21
|
3ad2ant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> 1 = if ( 2 || K , 1 , -u 1 ) ) |
23 |
19 22
|
eqtrd |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
24 |
23
|
3exp |
|- ( 2 || K -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
25 |
24
|
adantl |
|- ( ( K e. ZZ /\ 2 || K ) -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
26 |
25
|
rexlimdv |
|- ( ( K e. ZZ /\ 2 || K ) -> ( E. n e. ZZ ( n x. 2 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
27 |
4 26
|
mpd |
|- ( ( K e. ZZ /\ 2 || K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
28 |
|
odd2np1 |
|- ( K e. ZZ -> ( -. 2 || K <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) ) |
29 |
28
|
biimpa |
|- ( ( K e. ZZ /\ -. 2 || K ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) |
30 |
6 5
|
mulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. CC ) |
31 |
|
1cnd |
|- ( n e. ZZ -> 1 e. CC ) |
32 |
30 31 8
|
adddird |
|- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) x. _pi ) = ( ( ( 2 x. n ) x. _pi ) + ( 1 x. _pi ) ) ) |
33 |
6 5
|
mulcomd |
|- ( n e. ZZ -> ( 2 x. n ) = ( n x. 2 ) ) |
34 |
33
|
oveq1d |
|- ( n e. ZZ -> ( ( 2 x. n ) x. _pi ) = ( ( n x. 2 ) x. _pi ) ) |
35 |
34 9
|
eqtrd |
|- ( n e. ZZ -> ( ( 2 x. n ) x. _pi ) = ( n x. ( 2 x. _pi ) ) ) |
36 |
7
|
mulid2i |
|- ( 1 x. _pi ) = _pi |
37 |
36
|
a1i |
|- ( n e. ZZ -> ( 1 x. _pi ) = _pi ) |
38 |
35 37
|
oveq12d |
|- ( n e. ZZ -> ( ( ( 2 x. n ) x. _pi ) + ( 1 x. _pi ) ) = ( ( n x. ( 2 x. _pi ) ) + _pi ) ) |
39 |
|
2cn |
|- 2 e. CC |
40 |
39 7
|
mulcli |
|- ( 2 x. _pi ) e. CC |
41 |
40
|
a1i |
|- ( n e. ZZ -> ( 2 x. _pi ) e. CC ) |
42 |
5 41
|
mulcld |
|- ( n e. ZZ -> ( n x. ( 2 x. _pi ) ) e. CC ) |
43 |
42 8
|
addcomd |
|- ( n e. ZZ -> ( ( n x. ( 2 x. _pi ) ) + _pi ) = ( _pi + ( n x. ( 2 x. _pi ) ) ) ) |
44 |
32 38 43
|
3eqtrrd |
|- ( n e. ZZ -> ( _pi + ( n x. ( 2 x. _pi ) ) ) = ( ( ( 2 x. n ) + 1 ) x. _pi ) ) |
45 |
44
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( _pi + ( n x. ( 2 x. _pi ) ) ) = ( ( ( 2 x. n ) + 1 ) x. _pi ) ) |
46 |
|
oveq1 |
|- ( ( ( 2 x. n ) + 1 ) = K -> ( ( ( 2 x. n ) + 1 ) x. _pi ) = ( K x. _pi ) ) |
47 |
46
|
adantl |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( ( ( 2 x. n ) + 1 ) x. _pi ) = ( K x. _pi ) ) |
48 |
45 47
|
eqtr2d |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. _pi ) = ( _pi + ( n x. ( 2 x. _pi ) ) ) ) |
49 |
48
|
fveq2d |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) ) |
50 |
|
cosper |
|- ( ( _pi e. CC /\ n e. ZZ ) -> ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) ) |
51 |
7 50
|
mpan |
|- ( n e. ZZ -> ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) ) |
52 |
51
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) ) |
53 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
54 |
53
|
a1i |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` _pi ) = -u 1 ) |
55 |
49 52 54
|
3eqtrd |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = -u 1 ) |
56 |
55
|
3adant1 |
|- ( ( -. 2 || K /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = -u 1 ) |
57 |
|
iffalse |
|- ( -. 2 || K -> if ( 2 || K , 1 , -u 1 ) = -u 1 ) |
58 |
57
|
eqcomd |
|- ( -. 2 || K -> -u 1 = if ( 2 || K , 1 , -u 1 ) ) |
59 |
58
|
3ad2ant1 |
|- ( ( -. 2 || K /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> -u 1 = if ( 2 || K , 1 , -u 1 ) ) |
60 |
56 59
|
eqtrd |
|- ( ( -. 2 || K /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
61 |
60
|
3exp |
|- ( -. 2 || K -> ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
62 |
61
|
adantl |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
63 |
62
|
rexlimdv |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
64 |
29 63
|
mpd |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
65 |
27 64
|
pm2.61dan |
|- ( K e. ZZ -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |