Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
2 |
|
coscl |
|- ( B e. CC -> ( cos ` B ) e. CC ) |
3 |
|
mulcl |
|- ( ( ( cos ` A ) e. CC /\ ( cos ` B ) e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
5 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
6 |
|
3anass |
|- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) <-> ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) ) |
7 |
4 5 6
|
sylanblrc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
8 |
|
divcan3 |
|- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) |
9 |
7 8
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) |
10 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
11 |
|
sincl |
|- ( B e. CC -> ( sin ` B ) e. CC ) |
12 |
|
mulcl |
|- ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
13 |
10 11 12
|
syl2an |
|- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
14 |
4 13 4
|
ppncand |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( cos ` B ) ) ) ) |
15 |
|
cossub |
|- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
16 |
|
cosadd |
|- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
17 |
15 16
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) ) |
18 |
4
|
2timesd |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( cos ` B ) ) ) ) |
19 |
14 17 18
|
3eqtr4rd |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) = ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) ) |
20 |
19
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) |
21 |
9 20
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) |