Step |
Hyp |
Ref |
Expression |
1 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
2 |
1
|
recni |
|- ( _pi / 2 ) e. CC |
3 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
4 |
|
nncan |
|- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
5 |
2 3 4
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
6 |
5
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( cos ` A ) ) |
7 |
|
subcl |
|- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - A ) e. CC ) |
8 |
2 3 7
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - A ) e. CC ) |
9 |
|
coshalfpim |
|- ( ( ( _pi / 2 ) - A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
10 |
8 9
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
11 |
6 10
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
12 |
5
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
13 |
|
picn |
|- _pi e. CC |
14 |
13
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. CC ) |
15 |
|
pire |
|- _pi e. RR |
16 |
|
pipos |
|- 0 < _pi |
17 |
15 16
|
gt0ne0ii |
|- _pi =/= 0 |
18 |
17
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi =/= 0 ) |
19 |
8 14 18
|
divcan1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) |
20 |
19
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) |
21 |
|
zre |
|- ( ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) |
22 |
21
|
adantl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) |
23 |
|
remulcl |
|- ( ( ( ( ( _pi / 2 ) - A ) / _pi ) e. RR /\ _pi e. RR ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) |
24 |
22 15 23
|
sylancl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) |
25 |
20 24
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - A ) e. RR ) |
26 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ ( ( _pi / 2 ) - A ) e. RR ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) |
27 |
1 25 26
|
sylancr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) |
28 |
12 27
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. RR ) |
29 |
28
|
rered |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) = A ) |
30 |
|
simplr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
31 |
29 30
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
32 |
|
0zd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 e. ZZ ) |
33 |
|
elioore |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
34 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
35 |
1 33 34
|
sylancr |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) |
36 |
15
|
a1i |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> _pi e. RR ) |
37 |
|
eliooord |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) |
38 |
37
|
simprd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) |
39 |
|
posdif |
|- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
40 |
33 1 39
|
sylancl |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
41 |
38 40
|
mpbid |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( _pi / 2 ) - A ) ) |
42 |
16
|
a1i |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < _pi ) |
43 |
35 36 41 42
|
divgt0d |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( ( _pi / 2 ) - A ) / _pi ) ) |
44 |
1
|
a1i |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( _pi / 2 ) e. RR ) |
45 |
2
|
negcli |
|- -u ( _pi / 2 ) e. CC |
46 |
13 2
|
negsubi |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
47 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
48 |
13 2 2 47
|
subaddrii |
|- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
49 |
46 48
|
eqtri |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
50 |
2 13 45 49
|
subaddrii |
|- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
51 |
37
|
simpld |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) |
52 |
50 51
|
eqbrtrid |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) < A ) |
53 |
44 36 33 52
|
ltsub23d |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < _pi ) |
54 |
13
|
mulid1i |
|- ( _pi x. 1 ) = _pi |
55 |
53 54
|
breqtrrdi |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) |
56 |
|
1red |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 1 e. RR ) |
57 |
|
ltdivmul |
|- ( ( ( ( _pi / 2 ) - A ) e. RR /\ 1 e. RR /\ ( _pi e. RR /\ 0 < _pi ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) |
58 |
35 56 36 42 57
|
syl112anc |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) |
59 |
55 58
|
mpbird |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < 1 ) |
60 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
61 |
59 60
|
breqtrdi |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) |
62 |
|
btwnnz |
|- ( ( 0 e. ZZ /\ 0 < ( ( ( _pi / 2 ) - A ) / _pi ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
63 |
32 43 61 62
|
syl3anc |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
64 |
31 63
|
syl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
65 |
64
|
pm2.01da |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
66 |
|
sineq0 |
|- ( ( ( _pi / 2 ) - A ) e. CC -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
67 |
8 66
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
68 |
67
|
necon3abid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 <-> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
69 |
65 68
|
mpbird |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 ) |
70 |
11 69
|
eqnetrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) =/= 0 ) |