| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 2 | 1 | recni |  |-  ( _pi / 2 ) e. CC | 
						
							| 3 |  | simpl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) | 
						
							| 4 |  | nncan |  |-  ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( cos ` A ) ) | 
						
							| 7 |  | subcl |  |-  ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - A ) e. CC ) | 
						
							| 8 | 2 3 7 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - A ) e. CC ) | 
						
							| 9 |  | coshalfpim |  |-  ( ( ( _pi / 2 ) - A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) | 
						
							| 11 | 6 10 | eqtr3d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) | 
						
							| 13 |  | picn |  |-  _pi e. CC | 
						
							| 14 | 13 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. CC ) | 
						
							| 15 |  | pire |  |-  _pi e. RR | 
						
							| 16 |  | pipos |  |-  0 < _pi | 
						
							| 17 | 15 16 | gt0ne0ii |  |-  _pi =/= 0 | 
						
							| 18 | 17 | a1i |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi =/= 0 ) | 
						
							| 19 | 8 14 18 | divcan1d |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) | 
						
							| 21 |  | zre |  |-  ( ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) | 
						
							| 23 |  | remulcl |  |-  ( ( ( ( ( _pi / 2 ) - A ) / _pi ) e. RR /\ _pi e. RR ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) | 
						
							| 24 | 22 15 23 | sylancl |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) | 
						
							| 25 | 20 24 | eqeltrrd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - A ) e. RR ) | 
						
							| 26 |  | resubcl |  |-  ( ( ( _pi / 2 ) e. RR /\ ( ( _pi / 2 ) - A ) e. RR ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) | 
						
							| 27 | 1 25 26 | sylancr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) | 
						
							| 28 | 12 27 | eqeltrrd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. RR ) | 
						
							| 29 | 28 | rered |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) = A ) | 
						
							| 30 |  | simplr |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 31 | 29 30 | eqeltrrd |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 32 |  | 0zd |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 e. ZZ ) | 
						
							| 33 |  | elioore |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) | 
						
							| 34 |  | resubcl |  |-  ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) | 
						
							| 35 | 1 33 34 | sylancr |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) | 
						
							| 36 | 15 | a1i |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> _pi e. RR ) | 
						
							| 37 |  | eliooord |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) | 
						
							| 38 | 37 | simprd |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) | 
						
							| 39 |  | posdif |  |-  ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) | 
						
							| 40 | 33 1 39 | sylancl |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) | 
						
							| 41 | 38 40 | mpbid |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( _pi / 2 ) - A ) ) | 
						
							| 42 | 16 | a1i |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < _pi ) | 
						
							| 43 | 35 36 41 42 | divgt0d |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( ( _pi / 2 ) - A ) / _pi ) ) | 
						
							| 44 | 1 | a1i |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( _pi / 2 ) e. RR ) | 
						
							| 45 | 2 | negcli |  |-  -u ( _pi / 2 ) e. CC | 
						
							| 46 | 13 2 | negsubi |  |-  ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) | 
						
							| 47 |  | pidiv2halves |  |-  ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi | 
						
							| 48 | 13 2 2 47 | subaddrii |  |-  ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) | 
						
							| 49 | 46 48 | eqtri |  |-  ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) | 
						
							| 50 | 2 13 45 49 | subaddrii |  |-  ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) | 
						
							| 51 | 37 | simpld |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) | 
						
							| 52 | 50 51 | eqbrtrid |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) < A ) | 
						
							| 53 | 44 36 33 52 | ltsub23d |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < _pi ) | 
						
							| 54 | 13 | mulridi |  |-  ( _pi x. 1 ) = _pi | 
						
							| 55 | 53 54 | breqtrrdi |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) | 
						
							| 56 |  | 1red |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 1 e. RR ) | 
						
							| 57 |  | ltdivmul |  |-  ( ( ( ( _pi / 2 ) - A ) e. RR /\ 1 e. RR /\ ( _pi e. RR /\ 0 < _pi ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) | 
						
							| 58 | 35 56 36 42 57 | syl112anc |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) | 
						
							| 59 | 55 58 | mpbird |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < 1 ) | 
						
							| 60 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 61 | 59 60 | breqtrdi |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) | 
						
							| 62 |  | btwnnz |  |-  ( ( 0 e. ZZ /\ 0 < ( ( ( _pi / 2 ) - A ) / _pi ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) | 
						
							| 63 | 32 43 61 62 | syl3anc |  |-  ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) | 
						
							| 64 | 31 63 | syl |  |-  ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) | 
						
							| 65 | 64 | pm2.01da |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) | 
						
							| 66 |  | sineq0 |  |-  ( ( ( _pi / 2 ) - A ) e. CC -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) | 
						
							| 67 | 8 66 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) | 
						
							| 68 | 67 | necon3abid |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 <-> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) | 
						
							| 69 | 65 68 | mpbird |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 ) | 
						
							| 70 | 11 69 | eqnetrd |  |-  ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) =/= 0 ) |